Features

- 80C52 Compatible
 - 8051 Instruction Compatible
 - Six 8-bit I/O Ports (64 Pins or 68 Pins Versions)
 - Four 8-bit I/O Ports (44 Pins Version)
 - Three 16-bit Timer/Counters
 - 256 Bytes Scratch Pad RAM
 - 9 Interrupt Sources with 4 Priority Levels
- Integrated Power Monitor (POR/PFD) to Supervise Internal Power Supply
- ISP (In-System Programming) Using Standard V_{cc} Power Supply
- Boot ROM Contains Low Level Flash Programming Routines and a Default Serial Loader
- High-speed Architecture
 - In Standard Mode:
 - 40 MHz (Vcc 2.7V to 5.5V, both Internal and external code execution) 60 MHz (Vcc 4.5V to 5.5V and Internal Code execution only)
 - In X2 mode (6 Clocks/machine cycle)
 - 20 MHz (Vcc 2.7V to 5.5V, both Internal and external code execution) 30 MHz (Vcc 4.5V to 5.5V and Internal Code execution only)
- 64K Bytes On-chip Flash Program/Data Memory
 - Byte and Page (128 Bytes) Erase and Write
 - 100k Write Cycles
- On-chip 1792 bytes Expanded RAM (XRAM)
 - Software Selectable Size (0, 256, 512, 768, 1024, 1792 Bytes)
 - 768 Bytes Selected at Reset for T89C51RD2 Compatibility
- On-chip 2048 Bytes EEPROM Block for Data Storage (AT89C51ED2 Only)
 100K Write Cycles
- Dual Data Pointer
- Variable Length MOVX for Slow RAM/Peripherals
- Improved X2 Mode with Independent Selection for CPU and Each Peripheral
- Keyboard Interrupt Interface on Port 1
- SPI Interface (Master/Slave Mode)
- 8-bit Clock Prescaler
- 16-bit Programmable Counter Array
- High Speed Output
 - Compare/Capture
 - Pulse Width Modulator
 - Watchdog Timer Capabilities
- Asynchronous Port Reset
- Full-duplex Enhanced UART with Dedicated Internal Baud Rate Generator
- Low EMI (Inhibit ALE)
- Hardware Watchdog Timer (One-time Enabled with Reset-Out), Power-off Flag
- Power Control Modes: Idle Mode, Power-down Mode
- Single Range Power Supply: 2.7V to 5.5V
- Industrial Temperature Range (-40 to +85°C)
- Packages: PLCC44, VQFP44, PLCC68, VQFP64, PDIL40

Description

AT89C51RD2/ED2 is high performance CMOS Flash version of the 80C51 CMOS single chip 8-bit microcontroller. It contains a 64-Kbyte Flash memory block for code and for data.

The 64-Kbytes Flash memory can be programmed either in parallel mode or in serial mode with the ISP capability or with software. The programming voltage is internally generated from the standard V_{CC} pin.

8-bit Flash Microcontroller

AT89C51RD2 AT89C51ED2

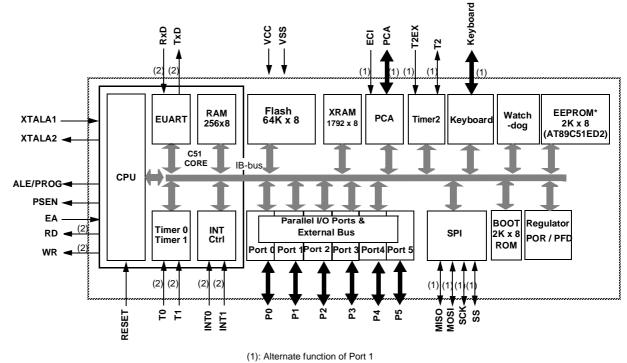
Rev. 4235D-8051-12/03

The AT89C51RD2/ED2 retains all of the features of the Atmel 80C52 with 256 bytes of internal RAM, a 9-source 4-level interrupt controller and three timer/counters. The AT89C51ED2 provides 2048 bytes of EEPROM for nonvolatile data storage.

In addition, the AT89C51RD2/ED2 has a Programmable Counter Array, an XRAM of 1792 bytes, a Hardware Watchdog Timer, SPI interface, Keyboard, a more versatile serial channel that facilitates multiprocessor communication (EUART) and a speed improvement mechanism (X2 Mode).

The fully static design of the AT89C51RD2/ED2 allows to reduce system power consumption by bringing the clock frequency down to any value, including DC, without loss of data.

The AT89C51RD2/ED2 has 2 software-selectable modes of reduced activity and an 8bit clock prescaler for further reduction in power consumption. In the Idle mode the CPU is frozen while the peripherals and the interrupt system are still operating. In the Powerdown mode the RAM is saved and all other functions are inoperative.


The added features of the AT89C51RD2/ED2 make it more powerful for applications that need pulse width modulation, high speed I/O and counting capabilities such as alarms, motor control, corded phones, and smart card readers.

Package	Flash (Bytes)	XRAM (Bytes)	Total RAM (Bytes)	I/O
PLCC44/VQFP44/DIL40	64K	1792	2048	34
PLCC68/VQFP64	64K	1792	2048	50

Table 1. Memory Size and I/O Pins

Block Diagram

Figure 1. Block Diagram

(2): Alternate function of Port 3

SFR Mapping

The Special Function Registers (SFRs) of the AT89C51RD2/ED2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP
- I/O port registers: P0, P1, P2, P3, PI2
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- PCA (Programmable Counter Array) registers: CCON, CCAPMx, CL, CH, CCAPxH, CCAPxL (x: 0 to 4)
- Power and clock control registers: PCON
- Hardware Watchdog Timer registers: WDTRST, WDTPRG
- Interrupt system registers: IE0, IPL0, IPH0, IE1, IPL1, IPH1
- Keyboard Interface registers: KBE, KBF, KBLS
- SPI registers: SPCON, SPSTR, SPDAT
- BRG (Baud Rate Generator) registers: BRL, BDRCON
- Clock Prescaler register: CKRL
- Others: AUXR, AUXR1, CKCON0, CKCON1

Table 2. C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	E0h	Accumulator								
В	F0h	B Register								
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer								
DPL	82h	Data Pointer Low Byte								
DPH	83h	Data Pointer High Byte								

Table 3. System Management SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	DPU	-	MO	XRS2	XRS1	XRS0	EXTRAM	AO
AUXR1	A2h	Auxiliary Register 1	-	-	ENBOOT	-	GF3	0	-	DPS
CKRL	97h	Clock Reload Register	-	-	-	-	-	-	-	-
CKCKON0	8Fh	Clock Control Register 0	-	WDTX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
CKCKON1	AFh	Clock Control Register 1	-	-	-	-	-	-	-	SPIX2

Table 4. Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	B1h	Interrupt Enable Control 1	-	-	-	-	-	ESPI		KBD
IPH0	B7h	Interrupt Priority Control High 0	-	PPCH	PT2H	PHS	PT1H	PX1H	PT0H	PX0H
IPL0	B8h	Interrupt Priority Control Low 0	-	PPCL	PT2L	PLS	PT1L	PX1L	PTOL	PX0L
IPH1	B3h	Interrupt Priority Control High 1	-	-	-	-	-	SPIH		KBDH
IPL1	B2h	Interrupt Priority Control Low 1	-	-	-	-	-	SPIL		KBDL

Table 5. Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P0	80h	8-bit Port 0								
P1	90h	8-bit Port 1								
P2	A0h	8-bit Port 2								
P3	B0h	8-bit Port 3								
P4	C0h	8-bit Port 4								

Table 5. Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P5	D8h	8-bit Port 5								
P5	C7h	8-bit Port 5 (byte addressable)								

Table 6. Timer SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
TCON	88h	Timer/Counter 0 and 1 Control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
TMOD	89h	Timer/Counter 0 and 1 Modes	GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00
TL0	8Ah	Timer/Counter 0 Low Byte								
TH0	8Ch	Timer/Counter 0 High Byte								
TL1	8Bh	Timer/Counter 1 Low Byte								
TH1	8Dh	Timer/Counter 1 High Byte								
WDTRST	A6h	WatchDog Timer Reset								
WDTPRG	A7h	WatchDog Timer Program	-	-	-	-	-	WTO2	WTO1	WTO0
T2CON	C8h	Timer/Counter 2 control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
T2MOD	C9h	Timer/Counter 2 Mode	-	-	-	-	-	-	T2OE	DCEN
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High Byte								
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low Byte								
TH2	CDh	Timer/Counter 2 High Byte								
TL2	CCh	Timer/Counter 2 Low Byte								

Table 7. PCA SFRs

Mnemo -nic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR		CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL	WDTE				CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low Byte								
СН	F9h	PCA Timer/Counter High Byte								
CCAPM0	DAh	PCA Timer/Counter Mode 0		ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0
CCAPM1	DBh	PCA Timer/Counter Mode 1		ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1
CCAPM2	DCh	PCA Timer/Counter Mode 2		ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2
CCAPM3	DDh	PCA Timer/Counter Mode 3		ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3
CCAPM4	DEh	PCA Timer/Counter Mode 4		ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4

Table 7. PCA SFRs (Continued)

Table 7.	PCA	A SER	s (Continued)				-					
Mnemo -nic	Add	Name	9	7		6	5	4	3	2	1	0
CCAP0H	FAh	PCA	Compare Capture Module 0 H	CCAP0H	7 C	CAP0H6	CCAP0H5	CCAP0H4	CCAP0H3	CCAP0H2	CCAP0H1	CCAP0H0
CCAP1H	FBh	PCA	Compare Capture Module 1 H	CCAP1H	7 C	CAP1H6	CCAP1H5	CCAP1H4	CCAP1H3	CCAP1H2	CCAP1H1	CCAP1H0
CCAP2H	FCh	PCA	Compare Capture Module 2 H	CCAP2H	7 C	CAP2H6	CCAP2H5	CCAP2H4	CCAP2H3	CCAP2H2	CCAP2H1	CCAP2H0
CCAP3H	FDh	PCA	Compare Capture Module 3 H	ССАРЗН	7 C	CAP3H6	CCAP3H5	CCAP3H4	CCAP3H3	CCAP3H2	CCAP3H1	CCAP3H0
CCAP4H	FEh	PCA	Compare Capture Module 4 H	CCAP4H	7 C	CAP4H6	CCAP4H5	CCAP4H4	CCAP4H3	CCAP4H2	CCAP4H1	CCAP4H0
CCAP0L	EAh	PCA	Compare Capture Module 0 L	CCAP0L	7 C	CAP0L6	CCAP0L5	CCAP0L4	CCAP0L3	CCAP0L2	CCAP0L1	CCAP0L0
CCAP1L	EBh	PCA	Compare Capture Module 1 L	CCAP1L	7 C	CAP1L6	CCAP1L5	CCAP1L4	CCAP1L3	CCAP1L2	CCAP1L1	CCAP1L0
CCAP2L	ECh	PCA	Compare Capture Module 2 L	CCAP2L	7 C	CAP2L6	CCAP2L5	CCAP2L4	CCAP2L3	CCAP2L2	CCAP2L1	CCAP2L0
CCAP3L	EDh	PCA	Compare Capture Module 3 L	CCAP3L	7 C	CAP3L6	CCAP3L5	CCAP3L4	CCAP3L3	CCAP3L2	CCAP3L1	CCAP3L0
CCAP4L	EEh	PCA	Compare Capture Module 4 L	CCAP4L	7 C	CAP4L6	CCAP4L5	CCAP4L4	CCAP4L3	CCAP4L2	CCAP4L1	CCAP4L0
Table 8.	Ser	ial I/O	Port SFRs									
Mnemoni	с	Add	Name		7	6	5	4	3	2	1	0
SCON		98h	Serial Control	FE/	SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
SBUF		99h	Serial Data Buffer									
SADEN		B9h	Slave Address Mask									
SADDR		A9h	Slave Address									
BDRCON		9Bh	Baud Rate Control					BRR	ТВСК	RBCK	SPD	SRC
BRL		9Ah	Baud Rate Reload									

Table 9. SPI Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	C3h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0
SPSTA	C4h	SPI Status	SPIF	WCOL	SSERR	MODF				
SPDAT	C5h	SPI Data	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0

Table 10. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBLS	9Ch	Keyboard Level Selector	KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0
KBE	9Dh	Keyboard Input Enable	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0

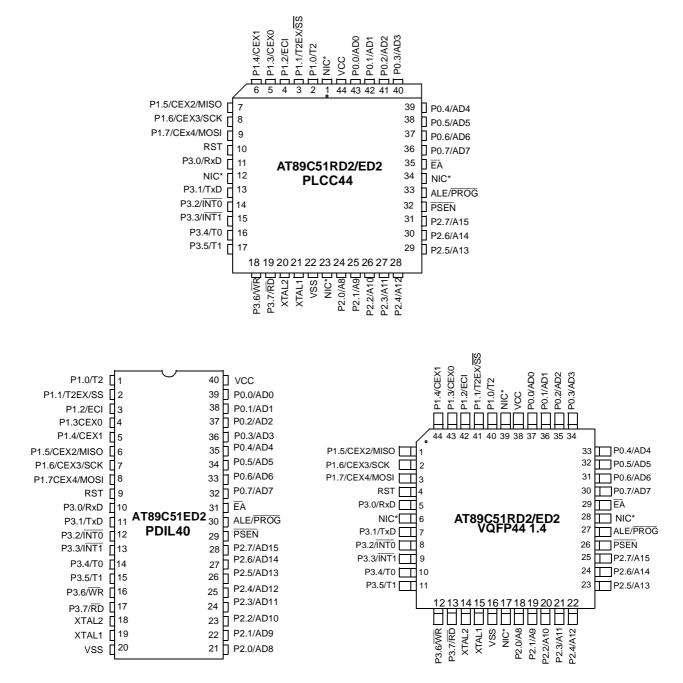
Table 11. EEPROM data Memory SFR (AT89C51ED2 only)

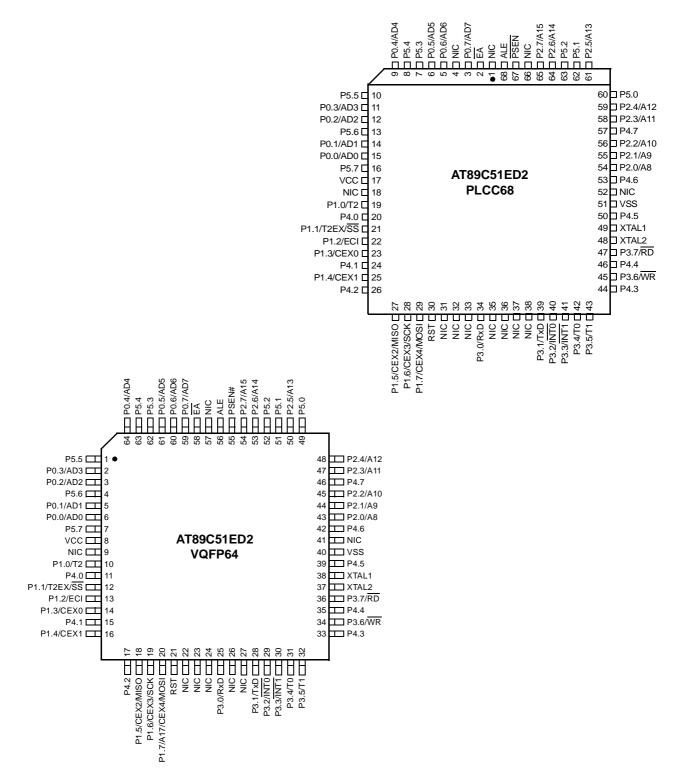
Mnemonic	Add	Name	7	6	5	4	3	2	1	0
EECON	D2h	EEPROM Data Control							EEE	EEBUSY

Table 12 shows all SFRs with their address and their reset value.

Table 12. SFR Mapping

	Bit Addressable			No	on Bit Addressal	ble			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	PI2 XXXX XX11	CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAP2H XXXX XXXX	ССАРЗН ХХХХ ХХХХ	CCAP4H XXXX XXXX		FFh
F0h	B 0000 0000								F7h
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAP2L XXXX XXXX	CCAP3L XXXX XXXX	CCAP4L XXXX XXXX		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW 0000 0000	FCON XXXX 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h	P4 1111 1111			SPCON 0001 0100	SPSTA 0000 0000	SPDAT XXXX XXXX		P5 byte Addressable 1111 1111	C7h
B8h	IPL0 X000 000	SADEN 0000 0000							BFh
B0h	P3 1111 1111	IEN1 XXXX X000	IPL1 XXXX X000	IPH1 XXXX X111				IPH0 X000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000						CKCON1 XXXX XXX0	AFh
A0h	P2 1111 1111		AUXR1 0XXX X0X0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	KBLS 0000 0000	KBE 0000 0000	KBF 0000 0000		9Fh
90h	P1 1111 1111							CKRL 1111 1111	97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XX00 1000	CKCON0 0000 0000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	


reserved



Pin Configurations

Figure 2. Pin Configurations

NIC: Not Internaly Connected

Table 13. Pin Description

			Pin Numbe	er		Туре			
Mnemonic	PLCC44	VQFP44	PLCC68	VQFP64	PDIL40	Туре	Name and Function		
V _{SS}	22	16	51	40	20	Ι	Ground: 0V reference		
V _{CC}	44	38	17	8	40	Ι	Power Supply: This is the power supply voltage for normal, idle and power-down operation		
P0.0 - P0.7	43 - 36	37 - 30	15, 14, 12, 11, 9,6, 5, 3	6, 5, 3, 2, 64, 61,60,59	32-39	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 must be polarized to V_{CC} or V_{SS} in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.		
P1.0 - P1.7	2 - 9	40 - 44 1 - 3	19, 21, 22, 23, 25, 27, 28, 29	10, 12, 13, 14, 16, 18, 19, 20	1-8	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification. Alternate functions for AT89C51RD2/ED2 Port 1 include:		
	2	40	19	10	1	I/O	P1.0: Input/Output		
						I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout		
	3	41	21	12	2	I/O	P1.1: Input/Output		
						I	T2EX: Timer/Counter 2 Reload/Capture/Direction Control		
						I	SS : SPI Slave Select		
	4	42	22	13	3	I/O	P1.2: Input/Output		
						I	ECI: External Clock for the PCA		
	5	43	23	14	4	I/O	P1.3: Input/Output		
						I/O	CEX0: Capture/Compare External I/O for PCA module 0		
	6	44	25	16	5	I/O	P1.4: Input/Output		
						I/O	CEX1: Capture/Compare External I/O for PCA module 1		
	7	1	27	18	6	I/O	P1.5: Input/Output		
						I/O	CEX2: Capture/Compare External I/O for PCA module 2		
						I/O	MISO: SPI Master Input Slave Output line		
							When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.		
	8	2	28	19	7	I/O	P1.6: Input/Output		
						I/O	CEX3: Capture/Compare External I/O for PCA module 3		
						I/O	SCK: SPI Serial Clock		

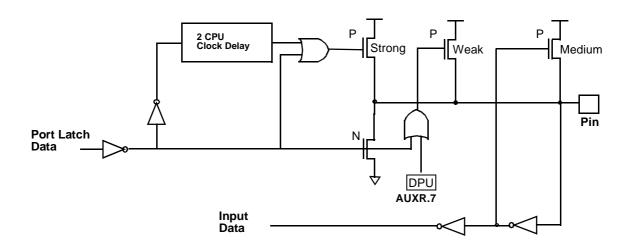
Table 13. Pin Description (Continued)

			Pin Numb	er		_	
Mnemonic	PLCC44	VQFP44	PLCC68	VQFP64	PDIL40	Туре	Name and Function
	9	3	29	20	8	I/O	P1.7: Input/Output:
						I/O	CEX4: Capture/Compare External I/O for PCA module 4
						I/O	MOSI: SPI Master Output Slave Input line
							When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master control- ler.
XTALA1	21	15	49	38	19	I	XTALA 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTALA2	20	14	48	37	18	0	XTALA 2: Output from the inverting oscillator amplifier
P2.0 - P2.7	24 - 31	18 - 25	54, 55, 56, 58, 59, 61, 64, 65	43, 44, 45, 47, 48, 50, 53, 54	21-28	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR.
P3.0 - P3.7	11, 13 - 19	5, 7 - 13	34, 39, 40, 41, 42, 43, 45, 47	25, 28, 29, 30, 31, 32, 34, 36	10-17	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.
	11	5	34	25	10	I	RXD (P3.0): Serial input port
	13	7	39	28	11	ο	TXD (P3.1): Serial output port
	14	8	40	29	12	I	INT0 (P3.2): External interrupt 0
	15	9	41	30	13	I	INT1 (P3.3): External interrupt 1
	16	10	42	31	14	I	T0 (P3.4): Timer 0 external input
	17	11	43	32	15	I	T1 (P3.5): Timer 1 external input
	18	12	45	34	16	0	WR (P3.6): External data memory write strobe
	19	13	47	36	17	0	RD (P3.7): External data memory read strobe
P4.0 - P4.7	-	-	20, 24, 26, 44, 46, 50, 53, 57	11, 15, 17,33, 35,39, 42, 46	-	I/O	Port 4: Port 4 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups.
P5.0 - P5.7	-	-	60, 62, 63, 7, 8, 10, 13, 16	49, 51, 52, 62, 63, 1, 4, 7	-	I/O	Port 5: Port 5 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups.
RST	10	4	30	21	9	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} . This pin is an output when the hardware watchdog forces a system reset.

Table 13. Pin Description (Continued)

			Pin Numb	er		Turne	
Mnemonic	PLCC44	VQFP44	PLCC68	VQFP64	PDIL40	Туре	Name and Function
ALE/PRO G	33	27	68	56	30	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data mem- ory. This pin is also the program pulse input (PROG) during Flash pro- gramming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	32	26	67	55	29	0	Program Strobe ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
EA	35	29	2	58	31	I	External Access Enable: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to FFFFH. If security level 1 is programmed, EA will be internally latched on Reset.

Port Types


AT89C51RD2/ED2 I/O ports (P1, P2, P3, P4, P5) implement the quasi-bidirectional output that is common on the 80C51 and most of its derivatives. This output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin is pulled low, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes. One of these pull-ups, called the "weak" pull-up, is turned on whenever the port latch for the pin contains a logic 1. The weak pull-up sources a very small current that will pull the pin high if it is left floating. A second pull-up, called the "medium" pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi-bidirectional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the medium pull-up turns off, and only the weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the medium pull-up and take the voltage on the port pin below its input threshold.

The third pull-up is referred to as the "strong" pull-up. This pull-up is used to speed up low-to-high transitions on a quasi-bidirectional port pin when the port latch changes from a logic 0 to a logic 1. When this occurs, the strong pull-up turns on for a brief time, two CPU clocks, in order to pull the port pin high quickly. Then it turns off again.

The DPU bit (bit 7 in AUXR register) allows to disable the permanent weak pull up of all ports when latch data is logical 0.

The quasi-bidirectional port configuration is shown in Figure 3.

Oscillator

To optimize the power consumption and execution time needed for a specific task, an internal prescaler feature has been implemented between the oscillator and the CPU and peripherals.

Registers

Table 14. CKRL Register

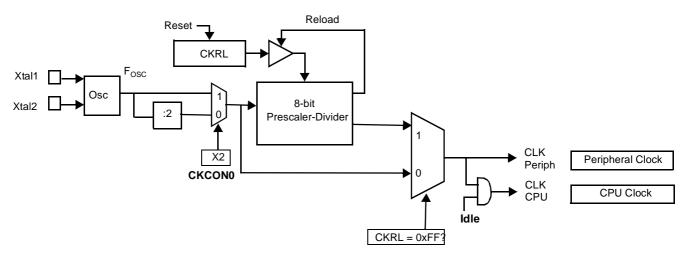
CKRL - Clock Reload Register (97h)

7		6	5	4	3	2	1	0
CKRL7	CKRL7 CKRL6		CKRL5	CKRL4	CKRL3	CKRL2	CKRL1	CKRL0
Bit Numb	Bit Number		emonic	Description				
7:0	7:0		CKRL	Clock Reload Prescaler valu	-			

Reset Value = 1111 1111b

Not bit addressable

Table 15. PCON Register


PCON - Power Control Register (87h)

7	6		5	4	3	2	1	0			
SMOD1	D1 SMOD0 -		POF	GF1	GF0	PD	IDL				
Bit Numb	er	Bit Mnemonic		Description							
7		S	MOD1	Serial Port Mo Set to select d		te in mode 1,	2 or 3.				
6		SMOD0		Serial Port Mode bit 0 Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.							
5			-	Reserved The value read	l from this bit i	s indetermina	te. Do not set	this bit.			
4		POF		Power-off Flag Cleared by software to recognize the next reset type. Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.							
3			GF1	General-purpose Flag Cleared by software for general-purpose usage. Set by software for general-purpose usage.							
2			GF0	General-purpose Flag Cleared by software for general-purpose usage. Set by software for general-purpose usage.							
1	1 PD			Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0 IDL			IDL	Idle Mode bit Cleared by hardware when interrupt or reset occurs. Set to enter idle mode.							

Reset Value = 00X1 0000b Not bit addressable

Functional Block Diagram

Figure 4. Functional Oscillator Block Diagram

Prescaler Divider

- A hardware RESET puts the prescaler divider in the following state:
 - CKRL = FFh: $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/2$ (Standard C51 feature)
- Any value between FFh down to 00h can be written by software into CKRL register in order to divide frequency of the selected oscillator:
 - CKRL = 00h: minimum frequency $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/1020$ (Standard Mode) $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/510$ (X2 Mode)
 - CKRL = FFh: maximum frequency $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/2$ (Standard Mode) $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}$ (X2 Mode)

 $\rm F_{CLK\,CPU}$ and $\rm F_{CLK\,PERIPH}$

In X2 Mode, for CKRL<>0xFF: $F_{CPU} = F_{CLKPERIPH} = \frac{F_{OSC}}{2 \times (255 - CKRL)}$

In X1 Mode, for CKRL<>0xFF then: $F_{CPU} = F_{CLKPERIPH} = \frac{F_{OSC}}{4 \times (255 - CKRL)}$

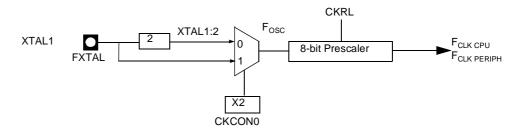
Enhanced Features

In comparison to the original 80C52, the AT89C51RD2/ED2 implements some new features, which are:

- X2 option
- Dual Data Pointer
- Extended RAM
- Programmable Counter Array (PCA)
- Hardware Watchdog
- SPI interface
- 4-level interrupt priority system
- Power-off flag
- ONCE mode
- ALE disabling
- Some enhanced features are also located in the UART and the Timer 2

X2 Feature The AT89C51RD2/ED2 core needs only 6 clock periods per machine cycle. This feature called 'X2' provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically the operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.


In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

Description The clock for the whole circuit and peripherals is first divided by two before being used by the CPU core and the peripherals.

This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%.

Figure 5 shows the clock generation block diagram. X2 bit is validated on the rising edge of the XTAL1 \div 2 to avoid glitches when switching from X2 to STD mode. Figure 6 shows the switching mode waveforms.

Figure 5. Clock Generation Diagram

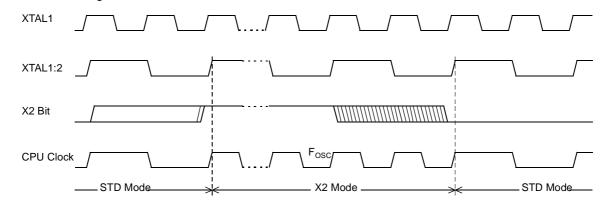


Figure 6. Mode Switching Waveforms

The X2 bit in the CKCON0 register (see Table 16) allows a switch from 12 clock periods per instruction to 6 clock periods and vice versa. At reset, the speed is set according to X2 bit of Hardware Security Byte (HSB). By default, Standard mode is active. Setting the X2 bit activates the X2 feature (X2 mode).

The T0X2, T1X2, T2X2, UartX2, PcaX2, and WdX2 bits in the CKCON0 register (Table 16) and SPIX2 bit in the CKCON1 register (see Table 17) allows a switch from standard peripheral speed (12 clock periods per peripheral clock cycle) to fast peripheral speed (6 clock periods per peripheral clock cycle). These bits are active only in X2 mode.

Table 16. CKCON0 Register

CKCON0 - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0					
-	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2					
Bit Number	Bit Mnemonic	Description	Description									
7	Reserved	The values for	or this bit are	indeterminite.	Do not set this	s bit.						
6	WDX2	(This control has no effect Cleared to se	Vatchdog Clock This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit as no effect). Cleared to select 6 clock periods per peripheral clock cycle. Net to select 12 clock periods per peripheral clock cycle.									
5	PCAX2	has no effect	bit is validated).). lect 6 clock p	d when the CP eriods per peri								
4	SIX2	(This control has no effect Cleared to se	Enhanced UART Clock (Mode 0 and 2) This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect). Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.									
3	T2X2	has no effect Cleared to se	bit is validated). elect 6 clock p	d when the CP periods per per ods per periph	ipheral clock	cycle.	s low, this bit					
2	T1X2	has no effect	bit is validated).). lect 6 clock p	d when the CP eriods per peri ck cycle.								
1	T0X2	(This control has no effect Cleared to se	Timer0 Clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect). Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.									
0	X2	all the peripherand to enable	erals. Set to set the individuation	periods per m select 6 clock r al peripherals') ware Security F	periods per ma (2' bits. Progr	achine cycle (ammed by ha	X2 mode) rdware after					

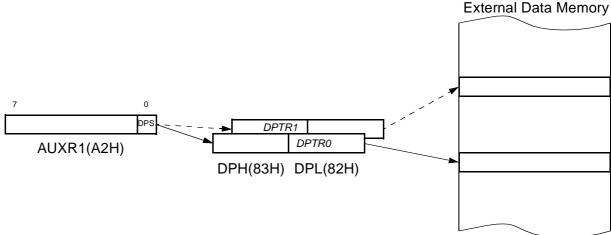
Reset Value = 0000 000'HSB. X2'b (See "Hardware Security Byte") Not bit addressable

Table 17. CKCON1 Register

CKCON1 - Clock Control Register (AFh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SPIX2
Bit Number	Bit Mnemonic	Description					
7	-	Reserved					
6	-	Reserved					
5	-	Reserved					
4	-	Reserved					
3	-	Reserved					
2	-	Reserved					
1	-	Reserved					
0	SPIX2	this bit has no Clear to selec	o effect). ct 6 clock peri	dated when th ods per periph ods per periph	neral clock cyc	cle.	n X2 is low,

Reset Value = XXXX XXX0b Not bit addressable


AIMEL

Dual Data Pointer Register (DPTR)

The additional data pointer can be used to speed up code execution and reduce code size.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1.0 (see Table 18) that allows the program code to switch between them (Refer to Figure 7).

Figure 7. Use of Dual Pointer

Table 18. AUXR1 Register

AUXR1- Auxiliary Register 1(0A2h)

7	6	5	4	3	2	1	0				
-	-	ENBOOT	ENBOOT - GF3 0 -								
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	ad from this b	it is indetermir	ate. Do not se	et this bit.					
5	ENBOOT	Cleared to dis	Enable Boot Flash Cleared to disable boot ROM. Set to map the boot ROM between F800h - 0FFFFh.								
4	-	Reserved The value rea	ad from this b	it is indetermir	ate. Do not se	et this bit.					
3	GF3	This bit is a	general-pur	oose user flag	j . ⁽¹⁾						
2	0	Always clea	red								
1	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
0	DPS	Data Pointer Cleared to se Set to select	lect DPTR0.								

Reset Value = XXXX XX0X0b

Not bit addressable

Note: 1. Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.

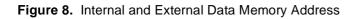
ASSEMBLY LANGUAGE

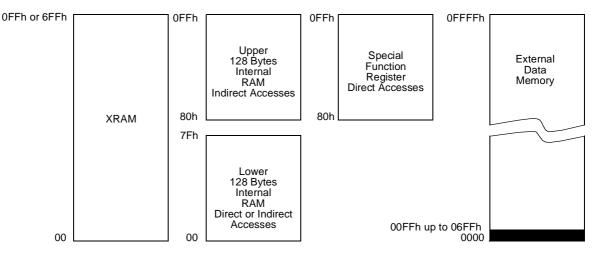
```
; Block move using dual data pointers
; Modifies DPTR0, DPTR1, A and PSW
; note: DPS exits opposite of entry state
; unless an extra INC AUXR1 is added
;
00A2 AUXR1 EQU 0A2H
;
0000 909000MOV DPTR, #SOURCE ; address of SOURCE
0003 05A2 INC AUXR1 ; switch data pointers
0005 90A000 MOV DPTR, #DEST ; address of DEST
0008 LOOP:
0008 05A2 INC AUXR1 ; switch data pointers
000A E0 MOVX A,@DPTR ; get a byte from SOURCE
000B A3 INC DPTR ; increment SOURCE address
000C 05A2 INC AUXR1 ; switch data pointers
000E F0 MOVX @DPTR,A ; write the byte to DEST
000F A3 INC DPTR ; increment DEST address
0010 70F6JNZ LOOP ; check for 0 terminator
0012 05A2 INC AUXR1 ; (optional) restore DPS
```


INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Expanded RAM (XRAM)

The AT89C51RD2/ED2 provides additional on-chip random access memory (RAM) space for increased data parameter handling and high level language usage.


AT89C51RD2/ED2 device haS expanded RAM in external data space configurable up to 1792 bytes (see Table 19).


The AT89C51RD2/ED2 internal data memory is mapped into four separate segments.

The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00h to 7Fh) are directly and indirectly addressable.
- 2. The Upper 128 bytes of RAM (addresses 80h to FFh) are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80h to FFh) are directly addressable only.
- 4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared in the AUXR register (see Table 19).

The lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7Fh, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction.

- Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data, accesses the SFR at location 0A0h (which is P2).
- Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For example: MOV @R0, # data where R0 contains 0A0h, accesses the data byte at address 0A0h, rather than P2 (whose address is 0A0h).
- The XRAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory which is physically located on-chip, logically occupies the first bytes of external data memory. The bits XRS0 and XRS1 are used to hide a part of the available XRAM as explained in Table 19. This can be

useful if external peripherals are mapped at addresses already used by the internal XRAM.

- With <u>EXTRAM = 0</u>, the XRAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to XRAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM = 0, MOVX @R0, # data where R0 contains 0A0H, accesses the XRAM at address 0A0H rather than external memory. An access to external data memory locations higher than the accessible size of the XRAM will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, with P0 and P2 as data/address busses, and P3.6 and P3.7 as write and read timing signals. Accesses to XRAM above 0FFH can only be done by the use of DPTR.
- With <u>EXTRAM = 1</u>, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51.MOVX @ Ri will provide an eight-bit address multiplexed with data on Port0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the high-order eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the XRAM.

The M0 bit allows to stretch the XRAM timings; if M0 is set, the read and write pulses are extended from 6 to 30 clock periods. This is useful to access external slow peripherals.

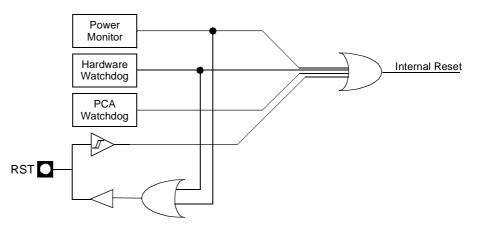
Registers

Table 19. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0				
DPU	-	MO	XRS2	XRS1	XRS0	EXTRAM	AO				
Bit Number	Bit Mnemonic	Description	Description								
7	DPU	Cleared by s	Disable Weak Pull-up Cleared by software to activate the permanent weak pull-up (default) Set by software to disable the weak pull-up (reduce power consumption)								
6	-	Reserved The value re	ad from this	bit is indetermir	nate. Do not s	et this bit.					
5	MO	Cleared to s periods (defa	Pulse length Cleared to stretch MOVX control: the \overline{RD} and the \overline{WR} pulse length is 6 clock periods (default). Set to stretch MOVX control: the \overline{RD} and the \overline{WR} pulse length is 30 clock periods.								
4	XRS2	XRAM Size									
3	XRS1	<u>XRS2</u> <u>XF</u> 0 0	<u>RS1</u> <u>XRS0</u> 0	<u>XRAM size</u> 256 bytes							
2	XRS0	0 0 0 1 0 1 1 0	1 0 1 0	512 bytes 768 bytes(defa 1024 bytes 1792 bytes	ault)						
1	EXTRAM	Cleared to a Set to acces Programmed	EXTRAM bit Cleared to access internal XRAM using movx @ Ri/ @ DPTR. Set to access external memory. Programmed by hardware after Power-up regarding Hardware Security Byte (HSB), default setting, XRAM selected.								
0	AO	,	E is emitted a used). (defau	It a constant rat It) Set, ALE is a							

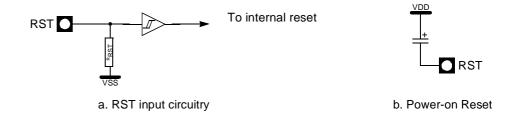
Reset Value = 0X00 10'HSB. XRAM'0b Not bit addressable



Reset

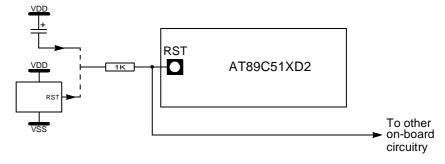
Introduction

The reset sources are: Power Management, Hardware Watchdog, PCA Watchdog and Reset input.


Figure 9. Reset schematic

Reset Input

The Reset input can be used to force a reset pulse longer than the internal reset controlled by the Power Monitor. RST input has a pull-down resistor allowing power-on reset by simply connecting an external capacitor to V_{CC} as shown in Figure 10. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the AT89C51RD2/ED2 datasheet.

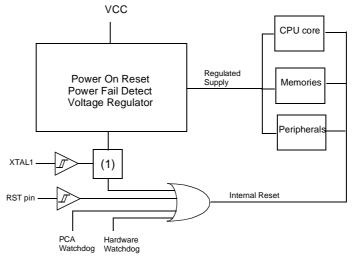

Figure 10. Reset Circuitry and Power-On Reset

Reset Output

As detailed in Section "Hardware Watchdog Timer", page 87, the WDT generates a 96clock period pulse on the RST pin. In order to properly propagate this pulse to the rest of the application in case of external capacitor or power-supply supervisor circuit, a 1 k Ω resistor must be added as shown Figure 11.

Figure 11. Recommended Reset Output Schematic

Power Monitor


The POR/PFD function monitors the internal power-supply of the CPU core memories and the peripherals, and if needed, suspends their activity when the internal power supply falls below a safety threshold. This is achieved by applying an internal reset to them.

By generating the Reset the Power Monitor insures a correct start up when AT89C51RD2/ED2 is powered up.

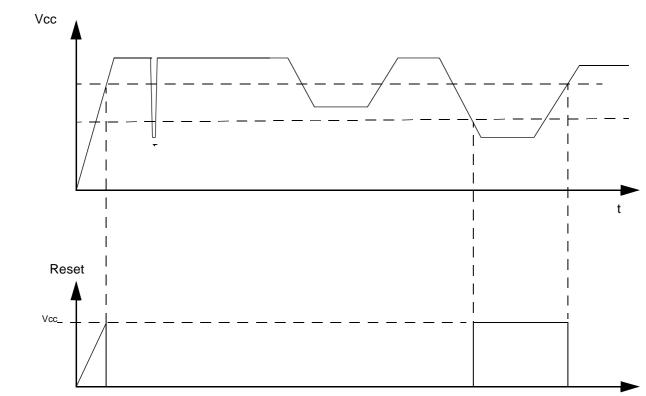
Description In order to startup and maintain the microcontroller in correct operating mode, V_{CC} has to be stabilized in the V_{CC} operating range and the oscillator has to be stabilized with a nominal amplitude compatible with logic level VIH/VIL.

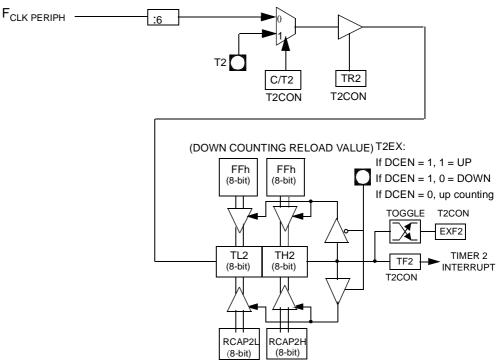
These parameters are controlled during the three phases: power-up, normal operation and power going down. See Figure 12.

Note: 1. Once XTAL1 High and low levels reach above and below VIH/VIL. a 1024 clock period delay will extend the reset coming from the Power Fail Detect. If the power falls below the Power Fail Detect threshold level, the Reset will be applied immediately.

The Voltage regulator generates a regulated internal supply for the CPU core the memories and the peripherals. Spikes on the external Vcc are smoothed by the voltage regulator.

The Power fail detect monitor the supply generated by the voltage regulator and generate a reset if this supply falls below a safety threshold as illustrated in the Figure 13 below.




Figure 13. Power Fail Detect

When the power is applied, the Power Monitor immediately asserts a reset. Once the internal supply after the voltage regulator reach a safety level, the power monitor then looks at the XTAL clock input. The internal reset will remain asserted until the Xtal1 levels are above and below VIH and VIL. Further more. An internal counter will count 1024 clock periods before the reset is de-asserted.

If the internal power supply falls below a safety level, a reset is immediately asserted.

Timer 2	The Timer 2 in the AT89C51RD2/ED2 is the standard C52 Timer 2. It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2 are cascaded. It is controlled by T2CON (Table 20) and T2MOD (Table 21) registers. Timer 2 operation is similar to Timer 0 and Timer 1. $C/T2$ selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to increment by the selected input.
	Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON).
	Refer to the Atmel 8-bit Microcontroller Hardware Manual for the description of Capture and Baud Rate Generator Modes.
	Timer 2 includes the following enhancements:Auto-reload mode with up or down counterProgrammable clock-output
Auto-reload Mode	The auto-reload mode configures Timer 2 as a 16-bit timer or event counter with auto- matic reload. If DCEN bit in T2MOD is cleared, Timer 2 behaves as in 80C52 (refer to the Atmel C51 Microcontroller Hardware Manual). If DCEN bit is set, Timer 2 acts as an Up/down timer/counter as shown in Figure 14. In this mode the T2EX pin controls the direction of count.
	When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.
	When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.
	The EXF2 bit toggles when Timer 2 overflows or underflows according to the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

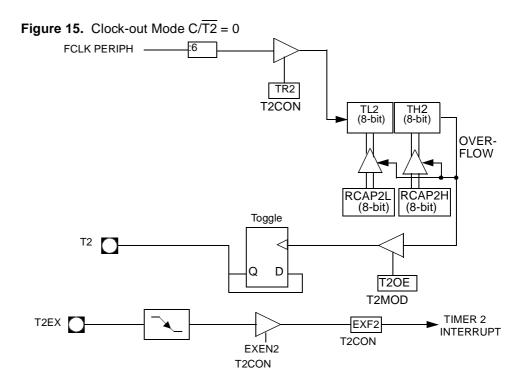
Figure 14. Auto-reload Mode Up/Down Counter (DCEN = 1)

Programmable Clock-output

In the clock-out mode, Timer 2 operates as a 50% duty-cycle, programmable clock generator (See Figure 15). The input clock increments TL2 at frequency $F_{CLK PERIPH}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

 $Clock-OutFrequency = \frac{F_{CLKPERIPH}}{4 \times (65536 - RCAP2H/RCAP2L)}$

For a 16 MHz system clock, Timer 2 has a programmable frequency range of 61 Hz $(F_{CLK PERIPH}/2^{16})$ to 4 MHz $(F_{CLK PERIPH}/4)$. The generated clock signal is brought out to T2 pin (P1.0).


Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Registers

Table 20. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0					
TF2	EXF2	RCLK	RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#									
Bit Number	Bit Mnemonic	Description	Description									
7	TF2		red by softwa	re. 2 overflow, if I	RCLK = 0 and	TCLK = 0.						
6	EXF2	Set when a c EXEN2 = 1. When set, ca interrupt is e Must be clear	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2 = 1. When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down ounter mode (DCEN = 1).									
5	RCLK		se timer 1 ove	erflow as recei w as receive c		•						
4	TCLK		se timer 1 ove	erflow as trans w as transmit o		•						
3	EXEN2	Cleared to ig Set to cause	a capture or	bit on T2EX pin fo reload when a used to clock t	negative tran	sition on T2E	X pin is					
2	TR2	Timer 2 Run Cleared to tu Set to turn of	rn off Timer 2									
1	C/T2#	Cleared for the Set for count	Timer/Counter 2 select bit Cleared for timer operation (input from internal clock system: $F_{CLK PERIPH}$). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.									
0	CP/RL2#	If RCLK = 1 on Timer 2 o Cleared to an if EXEN2=1.	verflow. uto-reload on	bi t CP/RL2# is igi Timer 2 overfl e transitions or	ows or negati	ve transitions						

Reset Value = 0000 0000b Bit addressable

Table 21. T2MOD Register

T2MOD - Timer 2 Mode Control Register (C9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T2OE	DCEN
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	T2OE	Timer 2 Output Enable bit Cleared to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.					
0	DCEN	Down Counter Enable bit Cleared to disable Timer 2 as up/down counter. Set to enable Timer 2 as up/down counter.					

Reset Value = XXXX XX00b Not bit addressable

Programmable Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Its clock input can be programmed to count any one of the following signals:

- Peripheral clock frequency (F_{CLK PERIPH}) ÷ 6
- Peripheral clock frequency (F_{CLK PERIPH}) ÷ 2
- Timer 0 overflow
- External input on ECI (P1.2)

Each compare/capture module can be programmed in any one of the following modes:

- Rising and/or falling edge capture
- Software timer
- High-speed output
- Pulse width modulator

Module 4 can also be programmed as a watchdog timer (see Section "PCA Watchdog Timer", page 48).

When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed below. If one or several bits in the port are not used for the PCA, they can still be used for standard I/O.

PCA Component	External I/O Pin		
16-bit Counter	P1.2/ECI		
16-bit Module 0	P1.3/CEX0		
16-bit Module 1	P1.4/CEX1		
16-bit Module 2	P1.5/CEX2		
16-bit Module 3	P1.6/CEX3		

The PCA timer is a common time base for all five modules (see Figure 16). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 22) and can be programmed to run at:

- 1/6 the peripheral clock frequency (F_{CLK PERIPH})
- 1/2 the peripheral clock frequency (F_{CLK PERIPH})
- The Timer 0 overflow
- The input on the ECI pin (P1.2)

The CMOD register includes three additional bits associated with the PCA (See Figure 16 and Table 22).

- The CIDL bit which allows the PCA to stop during idle mode.
- The WDTE bit which enables or disables the watchdog function on module 4.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR) to be set when the PCA timer overflows.

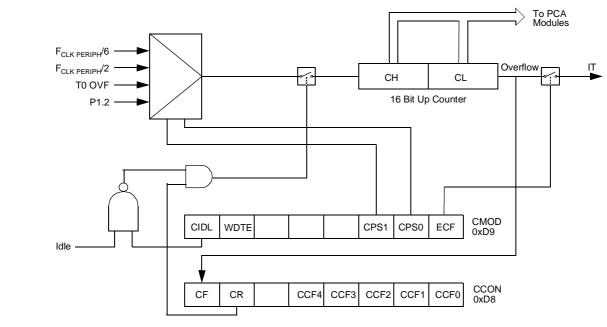


Figure 16. PCA Timer/Counter

Table 22. CMOD Register

CMOD - PCA Counter Mode Register (D9h)

7	6	5	4	3	2	1	0				
CIDL	WDTE	-	-	-	CPS1	CPS0	ECF				
Bit Number	Bit Mnemonic	Description	Description								
7	CIDL	Cleared to p	Counter Idle Control Cleared to program the PCA Counter to continue functioning during idle Mode. Set to program PCA to be gated off during idle.								
6	WDTE	Cleared to di	Watchdog Timer Enable Cleared to disable Watchdog Timer function on PCA Module 4. Set to enable Watchdog Timer function on PCA Module 4.								
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.					
4	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.					
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.					
2	CPS1	PCA Count	Pulse Select								
1	CPS0	CPS1 CPS0 Selected PCA input 0 0 Internal clock $F_{CLK PERIPH}/6$ 0 1 Internal clock $F_{CLK PERIPH}/2$ 1 0 Timer 0 Overflow 1 1 External clock at ECI/P1.2 pin (max rate = $F_{CLK PERIPH}/4$)									
0	ECF	Cleared to di	isable CF bit i		ipt hibit an interru te an interrupt	•					

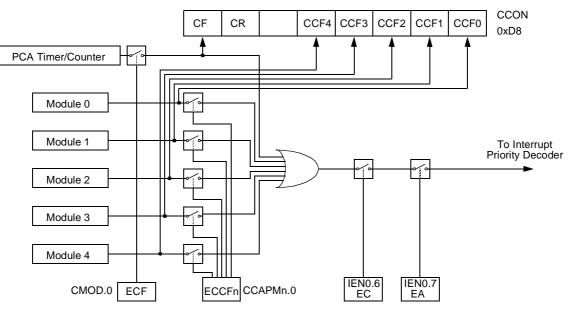
Reset Value = 00XX X000b Not bit addressable

The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 23).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.
- Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.

Table 23. CCON Register

CCON - PCA Counter Control Register (D8h)


7	6	5	4	3	2	1	0				
CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0				
Bit Number	Bit Mnemonic	Description	Description								
7	CF	PCA Counter Overflow flag Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but can only be cleared by software.									
6	CR	Must be clea	•	ol bit are to turn the l PCA counter		off.					
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.					
4	CCF4	Must be clea	e 4 interrupt red by softwa vare when a n	-	re occurs.						
3	CCF3	Must be clea	a 3 interrupt red by softwa vare when a n	-	re occurs.						
2	CCF2	Must be clea	e 2 interrupt red by softwa vare when a n	-	re occurs.						
1	CCF1	Must be clea	PCA Module 1 interrupt flag Must be cleared by software. Set by hardware when a match or capture occurs.								
0	CCF0	Must be clea	e 0 interrupt f red by softwa vare when a n	-	re occurs.						

Reset Value = 00X0 0000b Not bit addressable

The watchdog timer function is implemented in Module 4 (See Figure 19).

The PCA interrupt system is shown in Figure 17.

Figure 17. PCA Interrupt System

PCA Modules: each one of the five compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High Speed Output
- 8-bit Pulse Width Modulator

In addition, Module 4 can be used as a Watchdog Timer.

Each module in the PCA has a special function register associated with it. These registers are: CCAPM0 for Module 0, CCAPM1 for Module 1, etc. (See Table 24). The registers contain the bits that control the mode that each module will operate in.

- The ECCF bit (CCAPMn.0 where n = 0, 1, 2, 3, or 4 depending on the module) enables the CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the associated module.
- PWM (CCAPMn.1) enables the pulse width modulation mode.
- The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the modules capture/compare register.
- The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the modules capture/compare register.
- The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled and a capture will occur for either transition.
- The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function.

Table 24 shows the CCAPMn settings for the various PCA functions.

- Table 24.
 CCAPMn Registers (n = 0-4)
- CCAPM0 PCA Module 0 Compare/Capture Control Register (0DAh)
- CCAPM1 PCA Module 1 Compare/Capture Control Register (0DBh)
- CCAPM2 PCA Module 2 Compare/Capture Control Register (0DCh)
- CCAPM3 PCA Module 3 Compare/Capture Control Register (0DDh)

CCAPM4 - PCA Module 4 Compare/Capture Control Register (0DEh)

7	6	5	4	3	2	1	0			
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn			
Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	ECOMn		•	nparator functi ator function.	on.					
5	CAPPn			e edge capture e capture.						
4	CAPNn			e edge captur ge capture.	e.					
3	MATn		,	of the PCA co causes the CC			lagging an			
2	TOGn		-	of the PCA co causes the CE						
1	PWMn	Cleared to di		Mode Xn pin to be us n to be used a	•		•			
0	CCF0	an interrupt.	sable compar	re/capture flag pture flag CCF		Ū	Ū			

Reset Value = X000 0000b Not bit addressable

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
х	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	х	16-bit capture by a negative trigger on CEXn
х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	х	16-bit Software Timer/Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0 8-bit PWM	
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)

Table 25. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 26 & Table 27).

Table 26. CCAPnH Registers (n = 0 - 4)

6

CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)

CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh)

CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh)

CCAP3H - PCA Module 3 Compare/Capture Control Register High (0FDh)

CCAP4H - PCA Module 4 Compare/Capture Control Register High (0FEh)

٨

5

,	U	5	-	5	2	•	U
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnH Val	•	Capture Con	trol		

2

2

1

Λ

Reset Value = 0000 0000b Not bit addressable

7

Table 27. CCAPnL Registers (n = 0 - 4)

CCAP0L - PCA Module 0 Compare/Capture Control Register Low (0EAh)

CCAP1L - PCA Module 1 Compare/Capture Control Register Low (0EBh)

CCAP2L - PCA Module 2 Compare/Capture Control Register Low (0ECh)

CCAP3L - PCA Module 3 Compare/Capture Control Register Low (0EDh)

CCAP4L - PCA Module 4 Compare/Capture Control Register Low (0EEh)

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
Bit Number	Bit Mnemonic	Description	Description						
7 - 0	-	PCA Module CCAPnL Val	•	/Capture Con	trol				

Reset Value = 0000 0000b Not bit addressable

Table 28. CH Register

CH - PCA Counter Register High (0F9h)

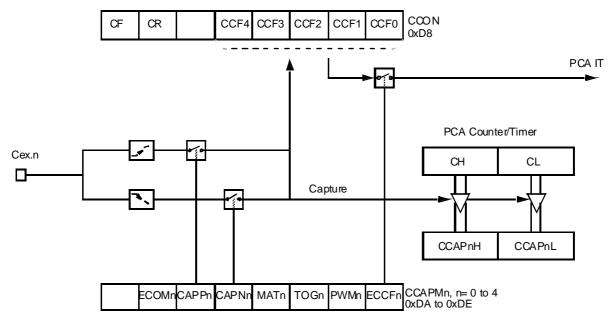
7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA counte CH Value	r				

Reset Value = 0000 0000b Not bit addressable

Table 29. CL Register

CL - PCA Counter Register Low (0E9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Counte CL Value	r				


Reset Value = 0000 0000b Not bit addressable

44 AT89C51RD2/ED2

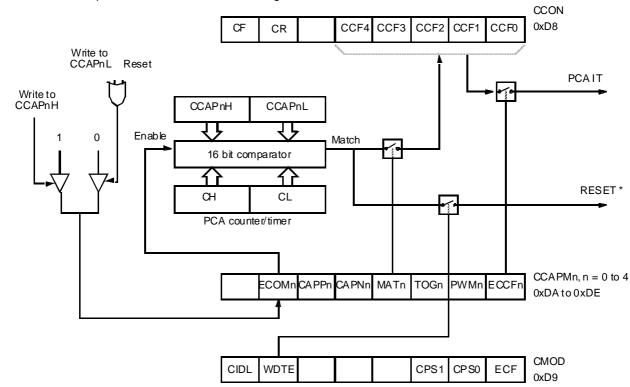
PCA Capture Mode

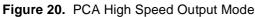
To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 18).

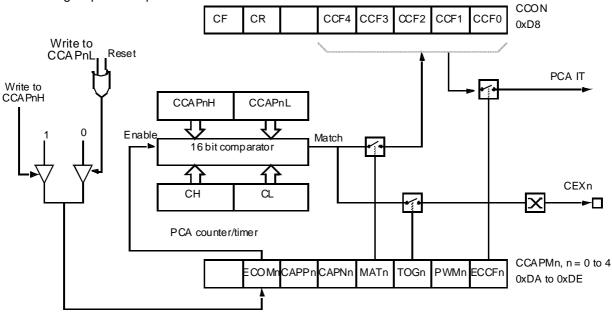
Figure 18. PCA Capture Mode

16-bit Software Timer/ Compare Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (See Figure 19).




Figure 19. PCA Compare Mode and PCA Watchdog Timer

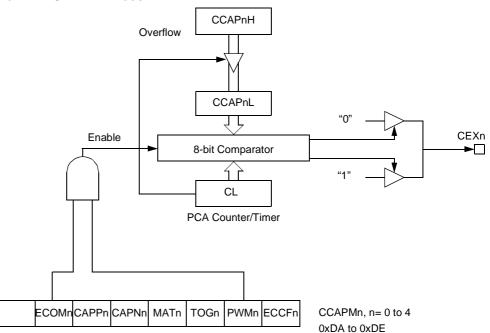

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM is set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

High Speed Output Mode In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the modules capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 20).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.


Once ECOM is set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

Pulse Width Modulator
ModeAll of the PCA modules can be used as PWM outputs. Figure 21 shows the PWM func-
tion. The frequency of the output depends on the source for the PCA timer. All of the
modules will have the same frequency of output because they all share the PCA timer.
The duty cycle of each module is independently variable using the modules capture reg-
ister CCAPLn. When the value of the PCA CL SFR is less than the value in the modules
CCAPLn SFR the output will be low, when it is equal to or greater than the output will be
high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn.
This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Figure 21. PCA PWM Mode

PCA Watchdog Timer An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 19 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

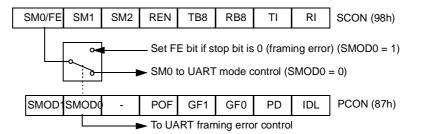
In order to hold off the reset, the user has three options:

- 1. Periodically change the compare value so it will never match the PCA timer.
- 2. Periodically change the PCA timer value so it will never match the compare values.
- 3. Disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

This watchdog timer won't generate a reset out on the reset pin.

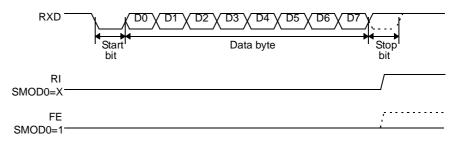
Serial I/O Port The serial I/O port in the AT89C51RD2/ED2 is compatible with the serial I/O port in the 80C52.


It provides both synchronous and asynchronous communication modes. It operates as a Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

Framing Error Detection Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 22).


Figure 22. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 33.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 23. and Figure 24.).

	Figure 24. UART Timings in Modes 2 and 3							
			$6 \sqrt{D7} \sqrt{D8} \sqrt{\dots}$					
	4 ▶ 4 Start bit	Data byte	→ Ninth Stop bit bit					
	RI							
	SMOD0=0		/					
	RI SMOD0=1							
	FE SMOD0=1							
Automatic Address Recognition	nication feature is enabled (S Implemented in hardware, a communication feature by incoming command frame. O receiver sets RI bit in SCON is not interrupted by comman If desired, the user may ena this configuration, the stop bi the received command frame by a valid stop bit. To support automatic address a broadcast address. Note: The multiprocessor co	SM2 bit in SCON register is utomatic address recognitic allowing the serial port to Only when the serial port re register to generate an inter nd frames addressed to othe ble the automatic address r t takes the place of the ninth e address matches the dev as recognition, a device is id mmunication and automatic a	examine the address of each ecognizes its own address, the rupt. This ensures that the CPU					
Given Address	register is a mask byte tha device's given address. The slaves at a time. The followir To address a device by its 1111b. For example: SADDR0101 0110b SADEN1111 1100b Given0101 01xxb	t contains don't-care bits don't-care bits provide the f ng example illustrates how a individual address, the SA of how to use given address	in SADDR register; the SADEN (defined by zeros) to form the lexibility to address one or more a given address is formed. DEN mask byte must be 1111					
	Given1111 0XX1b Slave C:SADDR1111 0010b	D						
	<u>SADEN1111 1101b</u> Given1111 00X1b							

The SADEN byte is selected so that each slave may be addressed separately. For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1.To communicate with slave A only, the master must send an address where bit 0 is clear (e. g. 1111 0000b).

For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e. g. 1111 0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e. g. 1111 0001b).

Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e. g. :

SADDR 0101 0110b SADEN 1111 1100b Broadcast =SADDR OR SADEN1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:SADDR1111 0001b SADEN1111 1010b Broadcast1111 1X11b,

Slave B:SADDR1111 0011b <u>SADEN1111 1001b</u> Broadcast1111 1X11B.

Slave C:SADDR=1111 0011b SADEN1111 1101b Broadcast1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

Reset AddressesOn reset, the SADDR and SADEN registers are initialized to 00h, i. e. the given and
broadcast addresses are xxxx xxxxb (all don't-care bits). This ensures that the serial
port will reply to any address, and so, that it is backwards compatible with the 80C51
microcontrollers that do not support automatic address recognition.

Registers

Table 30. SADEN Register

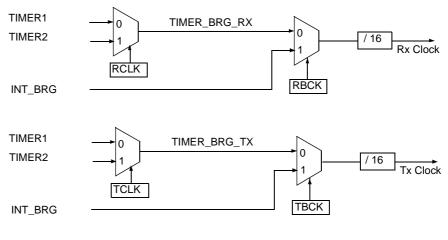
SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Table 31. SADDR Register

SADDR - Slave Address Register (A9h)


7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Baud Rate Selection for UART for Mode 1 and 3

The Baud Rate Generator for transmit and receive clocks can be selected separately via the T2CON and BDRCON registers.

Figure 25. Baud Rate Selection

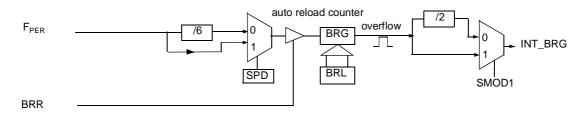

TCLK (T2CON)	RCLK (T2CON)	TBCK (BDRCON)	RBCK (BDRCON)	Clock Source UART Tx	Clock Source UART Rx
0	0	0	0	Timer 1	Timer 1
1	0	0	0	Timer 2	Timer 1
0	1	0	0	Timer 1	Timer 2
1	1	0	0	Timer 2	Timer 2
Х	0	1	0	INT_BRG	Timer 1
Х	1	1	0	INT_BRG	Timer 2
0	Х	0	1	Timer 1	INT_BRG
1	Х	0	1	Timer 2	INT_BRG
Х	Х	1	1	INT_BRG	INT_BRG

Table 32. Baud Rate Selection Table UART

Internal Baud Rate Generator (BRG)

When the internal Baud Rate Generator is used, the Baud Rates are determined by the BRG overflow depending on the BRL reload value, the value of SPD bit (Speed Mode) in BDRCON register and the value of the SMOD1 bit in PCON register.

Figure 26. Internal Baud Rate

• The baud rate for UART is token by formula:

 $Baud_Rate = \frac{2^{SMOD1} \cdot F_{PER}}{6^{(1-SPD)} \cdot 32 \cdot (256 \text{ -BRL})}$

 $\mathsf{BRL} = 256 - \frac{2^{\mathsf{SMOD1}} \cdot \mathsf{F}_{\mathsf{PER}}}{6^{(1-\mathsf{SPD})} \cdot 32 \cdot \mathsf{Baud}_\mathsf{Rate}}$

Table 33. SCON Register

SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0			
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI			
Bit Number	Bit Mnemo	onic Descr	Description							
7	FE	Clear Set by	hardware wh	SMOD0=1) fror state, not o en an invalid s t to enable acc	stop bit is dete	ected.				
	SM) Refer		it 0 rial port mode eared to enable		e SM0 bit.				
6	SM	<u>SM0</u>								
5	SM2	2 Clear Set to	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.							
4	REN	l Clear	otion Enable to disable seri enable serial	al reception.						
3	TB8	3 Clear	to transmit a l	Ninth bit to tr ogic 0 in the 9 jic 1 in the 9th	th bit.	odes 2 and 3				
2	RB	Cleare Set by	ed by hardwar hardware if 9	nth bit receive e if 9th bit received th bit received 0, RB8 is the	eived is a logi I is a logic 1.	c 0.) RB8 is not			
1	ті	Clear Set by	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.							
0	RI	Clear Set by	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 23. and Figure 24. in the other modes.							

Reset Value = 0000 0000b Bit addressable

Baud Rates	F _{osc} = 16	. 384 MHz	F _{OSC} = 24MHz		
	BRL	Error (%)	BRL	Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

 Table 34.
 Example of Computed Value When X2=1, SMOD1=1, SPD=1

Table 35. Example of Computed Value When X2=0, SMOD1=0, SPD=0

Baud Rates	F _{osc} = 16	. 384 MHz	F _{OSC} = 24MHz		
	BRL	Error (%)	BRL	Error (%)	
4800	247	1.23	243	0.16	
2400	238	1.23	230	0.16	
1200	220	1.23	202	3.55	
600	185	0.16	152	0.16	

The baud rate generator can be used for mode 1 or 3 (refer to Figure 25.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 42.)

UART Registers

Table 36. SADEN Register

SADEN - Slave Address Mask Register for UART (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 37. SADDR Register

SADDR - Slave Address Register for UART (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 38. SBUF Register

SBUF - Serial Buffer Register for UART (99h)

7	6	5	4	3	2	1	0

Reset Value = XXXX XXXXb

Table 39. BRL Register

BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 40. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0				
TF2	EXF2	RCLK	RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#								
Bit Number	Bit Mnemonic		Description								
7	TF2	Must be clea	Timer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.								
6	EXF2	Set when a EXEN2=1. When set, c interrupt is e Must be clea	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 nterrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)								
5	RCLK	Cleared to u	Receive Clock bit for UART Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.								
4	TCLK	Cleared to u		ART erflow as trans w as transmit							
3	EXEN2	Cleared to ig Set to cause	a capture or	e bit on T2EX pin fo reload when a used to clock	a negative tran	nsition on T2E	X pin is				
2	TR2		n control bit urn off timer 2 on timer 2.	<u>.</u>							
1	C/T2#	Cleared for	ter operation	bit n (input from i (input from T2							
0	CP/RL2#	If RCLK=1 of timer 2 over Cleared to a if EXEN2=1	flow. luto-reload on	bit P/RL2# is igno timer 2 overfl e transitions o	ows or negativ	ve transitions					

Reset Value = 0000 0000b Bit addressable

Table 41. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0			
SMOD1	SMOD0	-	- POF GF1 GF0 PD IDL							
Bit Number	Bit Mnemonic		Description							
7	SMOD1		Mode bit 1 fo t double baud	or UART I rate in mode	1, 2 or 3.					
6	SMOD0	Cleared to s	Serial port Mode bit 0 for UART Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.							
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	POF		ecognize next ware when VC	reset type. CC rises from	0 to its nomina	al voltage. Car	n also be set			
3	GF1		user for gener	al purpose usa irpose usage.	age.					
2	GF0		user for gener	al purpose usa irpose usage.	age.					
1	PD	Cleared by I	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Idle mode I Cleared by I Set to enter	nardware whe	n interrupt or	reset occurs.					

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

Table 42. BDRCON Register

BDRCON - Baud Rate Control Register (9Bh)

7	6	5	4	3	2	1	0				
-	-	-	BRR	твск	RBCK	SPD	SRC				
Bit Number	Bit Mnemonic	Descriptior	Description								
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit								
6	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not s	set this bit					
5	-	Reserved The value re	ead from this t	oit is indetermi	nate. Do not s	et this bit.					
4	BRR	Cleared to s	Baud Rate Run Control bit Cleared to stop the internal Baud Rate Generator. Set to start the internal Baud Rate Generator.								
3	ТВСК	Cleared to s	elect Timer 1	e Generator S or Timer 2 for d Rate Genera	the Baud Rate						
2	RBCK	Cleared to s	elect Timer 1	enerator Sele or Timer 2 for d Rate Genera	the Baud Rate						
1	SPD	Cleared to s	Baud Rate Speed Control bit for UART Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator.								
0	SRC	Cleared to s mode).	elect F _{OSC} /12		Rate Generato	or (F _{CLK PERIPH} /					

Reset Value = XXX0 0000b Not bit addressable

Keyboard Interface

The AT89C51RD2/ED2 implements a keyboard interface allowing the connection of a 8 x n matrix keyboard. It is based on 8 inputs with programmable interrupt capability on both high or low level. These inputs are available as alternate function of P1 and allow to exit from idle and power-down modes.

The keyboard interfaces with the C51 core through 3 special function registers: KBLS, the Keyboard Level Selection register (Table 45), KBE, the Keyboard interrupt Enable register (Table 44), and KBF, the Keyboard Flag register (Table 43).

Interrupt The keyboard inputs are considered as 8 independent interrupt sources sharing the same interrupt vector. An interrupt enable bit (KBD in IE1) allows global enable or disable of the keyboard interrupt (see Figure 27). As detailed in Figure 28 each keyboard input has the capability to detect a programmable level according to KBLS. x bit value. Level detection is then reported in interrupt flags KBF.x that can be masked by software using KBE. x bits.

This structure allow keyboard arrangement from 1 by n to 8 by n matrix and allows usage of P1 inputs for other purpose.

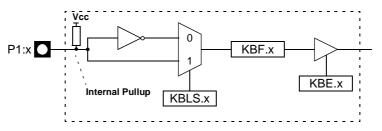
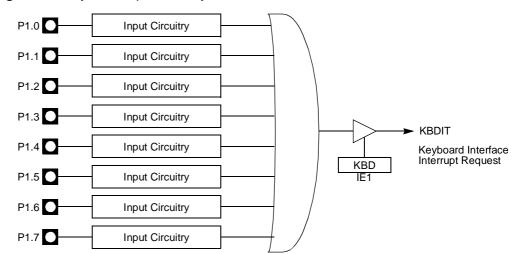



Figure 28. Keyboard Input Circuitry

Power Reduction Mode

P1 inputs allow exit from idle and power-down modes as detailed in Section "Power Management", page 83.

Registers

Table 43. KBF Register

KBF-Keyboard Flag Register (9Eh)

7	6	5	4	3	2	1	0			
KBF7	KBF6	KBF5	KBF5 KBF4 KBF3 KBF2 KBF1 KBF0							
Bit Number	Bit Mnemonic	Description								
7	KBF7	Set by hardw Keyboard int	Keyboard line 7 flag Set by hardware when the Port line 7 detects a programmed level. It generates a Keyboard interrupt request if the KBKBIE.7 bit in KBIE register is set. Must be cleared by software.							
6	KBF6	Keyboard int	are when the	Port line 6 det t if the KBIE.6 re.			generates a			
5	KBF5	Keyboard int	are when the	Port line 5 det t if the KBIE.5 re.			generates a			
4	KBF4	Keyboard int	are when the	Port line 4 det t if the KBIE.4 re.			generates a			
3	KBF3	Keyboard int	are when the	Port line 3 det t if the KBIE.3 re.			generates a			
2	KBF2	Keyboard int	are when the	Port line 2 det t if the KBIE.2 re.			generates a			
1	KBF1	Set by hardw Keyboard int	Keyboard line 1 flag Set by hardware when the Port line 1 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.1 bit in KBIE register is set. Must be cleared by software.							
0	KBF0	Keyboard int	are when the	Port line 0 det t if the KBIE.0 re.			generates a			

Reset Value = 0000 0000b

This register is read only access, all flags are automatically cleared by reading the register.

Table 44. KBE Register

KBE-Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0				
KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0				
Bit Number	Bit Mnemonic	Description	Description								
7	KBE7	Cleared to en	Keyboard line 7 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.7 bit in KBF register to generate an interrupt request.								
6	KBE6	Cleared to en	Keyboard line 6 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.6 bit in KBF register to generate an interrupt request.								
5	KBE5	Cleared to en	Keyboard line 5 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.5 bit in KBF register to generate an interrupt request.								
4	KBE4	Cleared to en	ne 4 Enable I nable standar e KBF.4 bit in		o generate an	interrupt requ	iest.				
3	KBE3	Cleared to en	ne 3 Enable I nable standar e KBF.3 bit in		o generate an	interrupt requ	iest.				
2	KBE2	Cleared to en	ne 2 Enable I nable standar e KBF.2 bit in		o generate an	interrupt requ	iest.				
1	KBE1	Cleared to en	Keyboard line 1 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.1 bit in KBF register to generate an interrupt request.								
0	KBE0	Cleared to en	ne 0 Enable I nable standar e KBF.0 bit in		o generate an	interrupt requ	iest.				

Reset Value = 0000 0000b

Table 45. KBLS Register

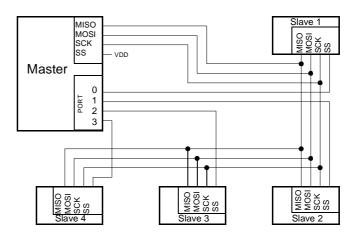
KBLS-Keyboard Level Selector Register (9Ch)

7	6	5	4	3	2	1	0					
KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0					
Bit Number	Bit Mnemonic	Description	Description									
7	KBLS7	Cleared to en		election bit vel detection on detection on P								
6	KBLS6	Cleared to en		election bit vel detection on detection on P								
5	KBLS5	Cleared to er	Keyboard line 5 Level Selection bit Cleared to enable a low level detection on Port line 5. Set to enable a high level detection on Port line 5.									
4	KBLS4	Cleared to er	Keyboard line 4 Level Selection bit Cleared to enable a low level detection on Port line 4. Set to enable a high level detection on Port line 4.									
3	KBLS3	Cleared to er	Keyboard line 3 Level Selection bit Cleared to enable a low level detection on Port line 3. Set to enable a high level detection on Port line 3.									
2	KBLS2	Cleared to en	Keyboard line 2 Level Selection bit Cleared to enable a low level detection on Port line 2. Set to enable a high level detection on Port line 2.									
1	KBLS1	Cleared to en	Keyboard line 1 Level Selection bit Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1.									
0	KBLS0	Cleared to en		election bit vel detection of detection on P								

Reset Value = 0000 0000b

Serial Port Interface (SPI)

The Serial Peripheral Interface Module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.


Features

Features of the SPI Module include the following:

- Full-duplex, three-wire synchronous transfers
- Master or Slave operation
- Eight programmable Master clock rates
- Serial clock with programmable polarity and phase
- Master Mode fault error flag with MCU interrupt capability
- Write collision flag protection

Signal DescriptionFigure 29 shows a typical SPI bus configuration using one Master controller and many
Slave peripherals. The bus is made of three wires connecting all the devices.

Figure 29. SPI Master/Slaves Interconnection

The Master device selects the individual Slave devices by using four pins of a parallel port to control the four \overline{SS} pins of the Slave devices.

Master Output Slave Input
(MOSI)This 1-bit signal is directly connected between the Master Device and a Slave Device.
The MOSI line is used to transfer data in series from the Master to the Slave. Therefore,
it is an output signal from the Master, and an input signal to a Slave. A Byte (8-bit word)
is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

Master Input Slave Output
(MISO)This 1-bit signal is directly connected between the Slave Device and a Master Device.
The MISO line is used to transfer data in series from the Slave to the Master. Therefore,
it is an output signal from the Slave, and an input signal to the Master. A Byte (8-bit
word) is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

SPI Serial Clock (SCK) This signal is used to synchronize the data movement both in and out of the devices through their MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange one Byte on the serial lines.

Slave Select (SS)Each Slave peripheral is selected by one Slave Select pin (SS). This signal must stay
low for any message for a Slave. It is obvious that only one Master (SS high level) can

			Â					
	drive the network. The Master may select each Slave device by software through port pins (Figure 30). To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the Master for a transmission.							
	In a Master configuration, the SS line can be used in conjunction with the MODF the SPI Status register (SPSTA) to prevent multiple masters from driving MOS SCK (see Error conditions).							
	A high level on the $\overline{\text{SS}}$ pin puts the MISO line of a Slave SPI in a high-impedance sta							
	 The SS pin could be used as a general-purpose if the following conditions are n The device is configured as a Master and the SSDIS control bit in SPCON i This kind of configuration can be found when only one Master is driving the and there is no way that the SS pin could be pulled low. Therefore, the MOD the SPSTA will never be set⁽¹⁾. The Device is configured as a Slave with CPHA and SSDIS control bits set⁽¹⁾ kind of configuration can happen when the system comprises one Master a Slave only. Therefore, the device should always be selected and there is no that the Master uses the SS pin to select the communicating Slave device. Note: 1. Clearing SSDIS control bit does not clear MODF. 2. Special care should be taken not to set SSDIS control bit when CPHA = '0' 							
Baud Rate	In Master mode, the baud rate can be selected from a baud rate generator which is con- trolled by three bits in the SPCON register: SPR2, SPR1 and SPR0. The Master clock is selected from one of seven clock rates resulting from the division of the internal clock by 2, 4, 8, 16, 32, 64 or 128. Table 46 gives the different clock rates selected by SPR2:SPR1:SPR0.							
	Table 46. SPI Master Baud Rate Selection							
	SPR2	SPR1	SPR0	Clock Rate	Baud Rate Divisor (BD)			
	0	0	0	F _{CLK PERIPH} /2	2			
		U	v	CLK PERIPH / -	2			

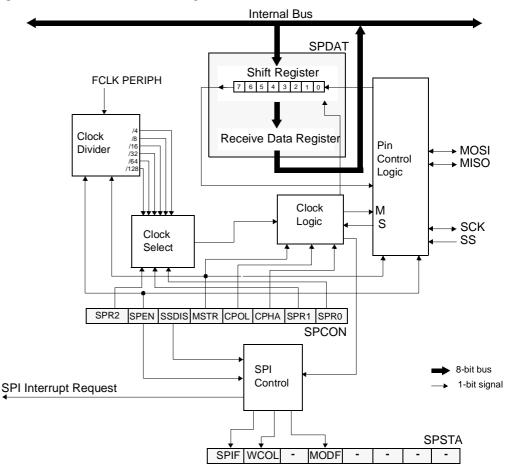
F_{CLK PERIPH} /4 F_{CLK PERIPH}/8

F_{CLK PERIPH} /16

F_{CLK PERIPH} /32

F_{CLK PERIPH} /64

F_{CLK PERIPH} /128


Don't Use

No BRG

Functional Description

Figure 30 shows a detailed structure of the SPI Module.

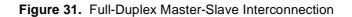
Figure 30. SPI Module Block Diagram

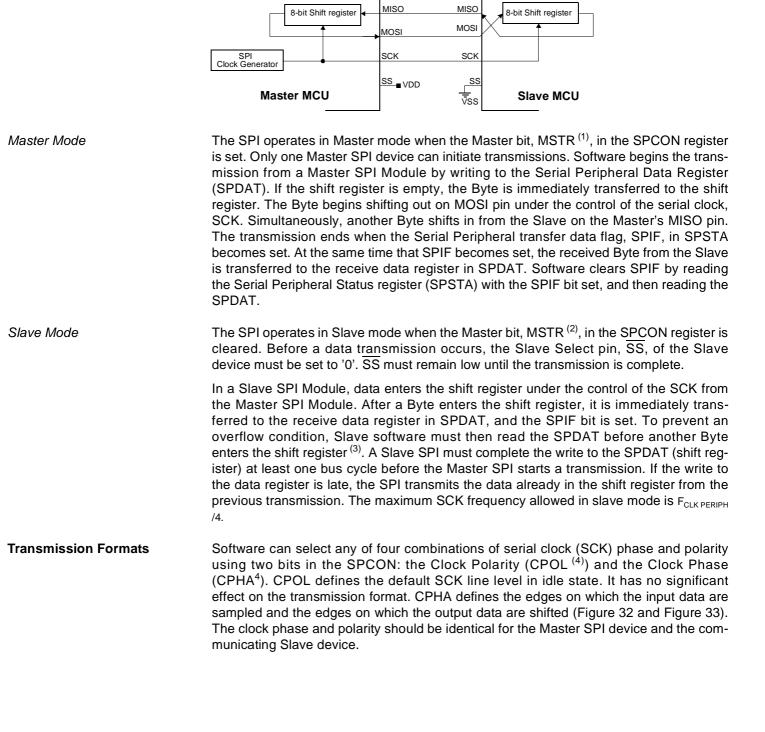
Operating Modes

The Serial Peripheral Interface can be configured in one of the two modes: Master mode or Slave mode. The configuration and initialization of the SPI Module is made through one register:

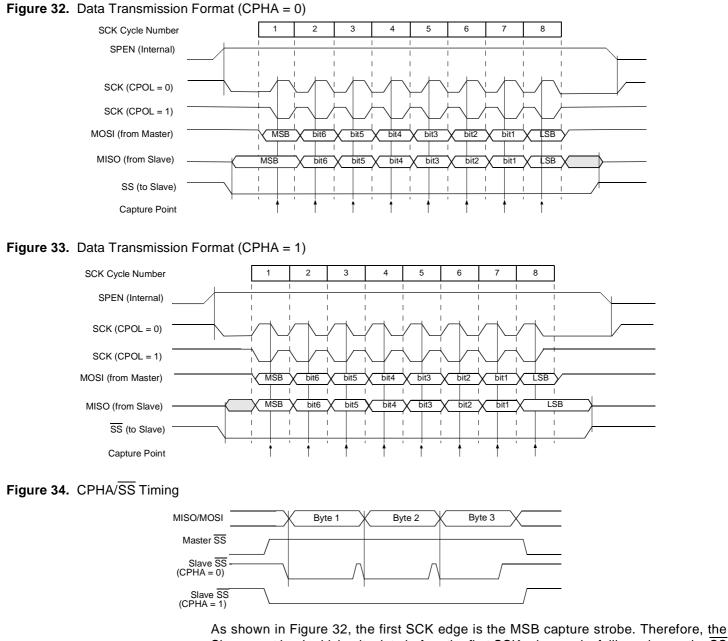
• The Serial Peripheral Control register (SPCON)

Once the SPI is configured, the data exchange is made using:


- SPCON
- The Serial Peripheral STAtus register (SPSTA)
- The Serial Peripheral DATa register (SPDAT)


During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A Slave Select line (SS) allows individual selection of a Slave SPI device; Slave devices that are not selected do not interfere with SPI bus activities.

When the Master device transmits data to the Slave device via the MOSI line, the Slave device responds by sending data to the Master device via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock (Figure 31).



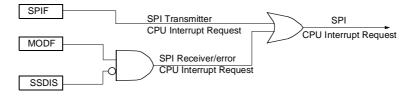
- 1. The SPI Module should be configured as a Master before it is enabled (SPEN set). Also, the Master SPI should be configured before the Slave SPI.
- 2. The SPI Module should be configured as a Slave before it is enabled (SPEN set).
- 3. The maximum frequency of the SCK for an SPI configured as a Slave is the bus clock speed.
- 4. Before writing to the CPOL and CPHA bits, the SPI should be disabled (SPEN = '0').

As shown in Figure 32, the first SCK edge is the MSB capture strobe. Therefore, the Slave must begin driving its data before the first SCK edge, and a falling edge on the \overline{SS} pin is used to start the transmission. The \overline{SS} pin must be toggled high and then low between each Byte transmitted (Figure 34).

Figure 33 shows an SPI transmission in which CPHA is '1'. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore, the Slave uses the first SCK edge as a start transmission signal. The SS pin can remain low between transmissions (Figure 34). This format may be preferred in systems having only one Master and only one Slave driving the MISO data line.

Error Conditions	The following flags in the SPSTA signal SPI error conditions:
Mode Fault (MODF)	 Mode Fault error in Master mode SPI indicates that the level on the Slave Select (SS) pin is inconsistent with the actual mode of the device. MODF is set to warn that there may be a multi-master conflict for system control. In this case, the SPI system is affected in the following ways: An SPI receiver/error CPU interrupt request is generated The SPEN bit in SPCON is cleared. This disables the SPI The MSTR bit in SPCON is cleared When SS Disable (SSDIS) bit in the SPCON register is cleared, the MODF flag is set
	when the \overline{SS} signal becomes '0'.
	However, as stated before, for a system with one Master, if the \overline{SS} pin of the Master device is pulled low, there is no way that another Master attempts to drive the network. In this case, to prevent the MODF flag from being set, software can set the SSDIS bit in the SPCON register and therefore making the \overline{SS} pin as a general-purpose I/O pin.
	Clearing the MODF bit is accomplished by a read of SPSTA register with MODF bit set, followed by a write to the SPCON register. SPEN Control bit may be restored to its original set state after the MODF bit has been cleared.
Write Collision (WCOL)	A Write Collision (WCOL) flag in the SPSTA is set when a write to the SPDAT register is done during a transmit sequence.
	WCOL does not cause an interruption, and the transfer continues uninterrupted.
	Clearing the WCOL bit is done through a software sequence of an access to SPSTA and an access to SPDAT.
Overrun Condition	An overrun condition occurs when the Master device tries to send several data Bytes and the Slave devise has not cleared the SPIF bit issuing from the previous data Byte transmitted. In this case, the receiver buffer contains the Byte sent after the SPIF bit was last cleared. A read of the SPDAT returns this Byte. All others Bytes are lost.
	This condition is not detected by the SPI peripheral.
SS Error Flag (SSERR)	A Synchronous Serial Slave Error occurs when \overline{SS} goes high before the end of a received data in slave mode. SSERR does not cause in interruption, this bit is cleared by writing 0 to SPEN bit (reset of the SPI state machine).
Interrupts	Two SPI status flags can generate a CPU interrupt requests:

Table 47. SPI Interrupts


Flag	Request		
SPIF (SP data transfer)	SPI Transmitter Interrupt request		
MODF (Mode Fault)	SPI Receiver/Error Interrupt Request (if SSDIS = '0')		

Serial Peripheral data transfer flag, SPIF: This bit is set by hardware when a transfer has been completed. SPIF bit generates transmitter CPU interrupt requests.

Mode Fault flag, MODF: This bit becomes set to indicate that the level on the SS is inconsistent with the mode of the SPI. MODF with SSDIS reset, generates receiver/error CPU interrupt requests. When SSDIS is set, no MODF interrupt request is generated.

Figure 35 gives a logical view of the above statements.

Figure 35. SPI Interrupt Requests Generation

Registers

There are three registers in the Module that provide control, status and data storage functions. These registers are describes in the following paragraphs.

Serial Peripheral Control Register (SPCON) • The Serial Peripheral Control Register does the following:

- Selects one of the Master clock rates
- Configure the SPI Module as Master or Slave
- Selects serial clock polarity and phase
- Enables the SPI Module
- Frees the SS pin for a general-purpose

Table 48 describes this register and explains the use of each bit

Table 48. SPCON Register

SPCON - Serial Peripheral Control Register (0C3H)

7	6	5	4	3	2	1	0	
SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0	
Bit Number	Bit Mne	emonic	Description					
7	SPR2		Serial Peripheral Rate 2 Bit with SPR1 and SPR0 define the clock rate.					
6	SPEN		Serial Peripheral Enable Cleared to disable the SPI interface. Set to enable the SPI interface.					
5	SS	DIS	$\overline{\text{SS Disable}}$ Cleared to enable $\overline{\text{SS}}$ in both Master and Slave modes. Set to disable $\overline{\text{SS}}$ in both Master and Slave modes. In Slave mode, this bit has no effect if CPHA ='0'. When SSDIS is set, no MODF interrupt request is generated.					
4	MS	STR	Serial Peripheral Master Cleared to configure the SPI as a Slave. Set to configure the SPI as a Master.					
3	CF	POL	Clock Polarity Cleared to have the SCK set to '0' in idle state. Set to have the SCK set to '1' in idle low.					
2	СРНА		Clock Phase Cleared to have the data sampled when the SCK leaves the i state (see CPOL). Set to have the data sampled when the SCK returns to idle sta CPOL).					

Bit Number	Bit Mnemonic	Descri	Description					
		SPR2	SPR1	SPR0	Serial Peripheral Rate			
1	SPR1	0	0	0	F _{CLK PERIPH} /2			
I		0	0	1	F _{CLK PERIPH} /4			
		0	1	0	F _{CLK PERIPH} /8			
		0	1	1	F _{CLK PERIPH} /16			
		1	0	0	F _{CLK PERIPH} /32			
0	SPR0	1	0	1	F _{CLK PERIPH} /64			
-		1	1	0	F _{CLK PERIPH} /128			
		1	1	1	Invalid			

Reset Value = 0001 0100b

Not bit addressable

Serial Peripheral Status Register The Serial Peripheral Status Register contains flags to signal the following conditions:

(SPSTA)

- Data transfer complete
- Write collision
- Inconsistent logic level on SS pin (mode fault error)

Table 49 describes the SPSTA register and explains the use of every bit in the register.

Table 49. SPSTA Register

SPSTA - Serial Peripheral Status and Control register (0C4H)

7	6	5	4	3	2	1	0					
SPIF	WCOL	SSERR	MODF	-	-	-	-					
Bit Number	Bit Mnemonic	Description	Description									
7	SPIF	Cleared by ha	Serial Peripheral Data Transfer Flag Cleared by hardware to indicate data transfer is in progress or has been approved by a clearing sequence. Set by hardware to indicate that the data transfer has been completed.									
6	WCOL	Cleared by ha	Write Collision Flag Cleared by hardware to indicate that no collision has occurred or has been approved by a clearing sequence. Set by hardware to indicate that a collision has been detected.									
5	SSERR	Set by hardw	Synchronous Serial Slave Error Flag Set by hardware when SS is de-asserted before the end of a received data. Cleared by disabling the SPI (clearing SPEN bit in SPCON).									
4	MODF	Mode Fault Cleared by hardware to indicate that the \overline{SS} pin is at appropriate logic level, or has been approved by a clearing sequence. Set by hardware to indicate that the \overline{SS} pin is at inappropriate logic level.										
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit										
2	-	Reserved The value rea	nd from this bi	it is indetermir	nate. Do not se	et this bit.						

Bit Number	Bit Mnemonic	Description
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	-	Reserved The value read from this bit is indeterminate. Do not set this bit.

Reset Value = 00X0 XXXXb

Not Bit addressable

Serial Peripheral DATa Register (SPDAT) The Serial Peripheral Data Register (Table 50) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in this model.

A Read of the SPDAT returns the value located in the receive buffer and not the content of the shift register.

Table 50. SPDAT Register

SPDAT - Serial Peripheral Data Register (0C5H)

7	6	5	4	3	2	1	0
R7	R6	R5	R4	R3	R2	R1	R0

Reset Value = Indeterminate

R7:R0: Receive data bits

SPCON, SPSTA and SPDAT registers may be read and written at any time while there is no on-going exchange. However, special care should be taken when writing to them while a transmission is on-going:

- Do not change SPR2, SPR1 and SPR0
- Do not change CPHA and CPOL
- Do not change MSTR
- Clearing SPEN would immediately disable the peripheral
- Writing to the SPDAT will cause an overflow.

AIMEL

Interrupt System

The <u>AT89C51RD2/ED2</u> has a total of 9 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Keyboard interrupt and the PCA global interrupt. These interrupts are shown in Figure 36.

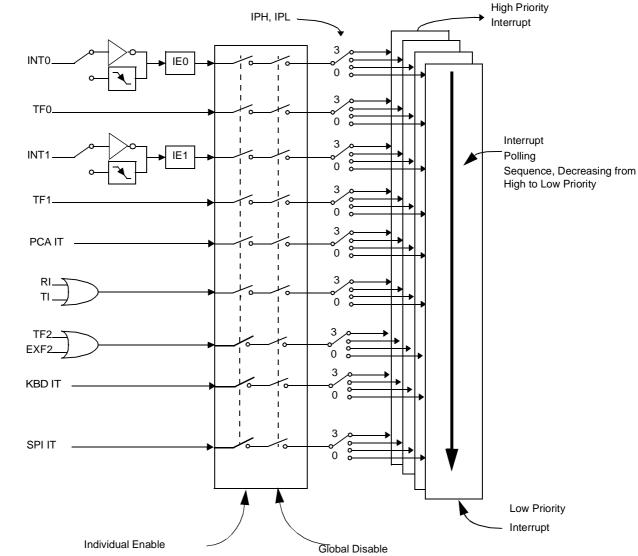


Figure 36. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 54 and Table 56). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 57) and in the Interrupt Priority High register (Table 55 and Table 56) shows the bit values and priority levels associated with each combination.

Registers

The PCA interrupt vector is located at address 0033H, the SPI interrupt vector is located at address 004BH and Keyboard interrupt vector is located at address 003BH. All other vectors addresses are the same as standard C52 devices.

IPH.x	IPL.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Interrupt Sources and Vector Addresses

Table 52. Interrupt Sources and Vector Addresses

Number	Polling Priority	Interrupt Source	Interrupt Request	Vector Address
0	0	Reset		0000h
1	1	INT0	IE0	0003h
2	2	Timer 0	TF0	000Bh
3	3	INT1	IE1	0013h
4	4	Timer 1	IF1	001Bh
5	6	UART	RI+TI	0023h
6	7	Timer 2	TF2+EXF2	002Bh
7	5	PCA	CF + CCFn (n = 0 - 4)	0033h
8	8	Keyboard	KBDIT	003Bh
9	9	-	-	0043h
10	10	SPI	SPIIT	004Bh

Table 53. IENO Register

IEN0 - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0	
EA	EC	ET2	ES	ET1	EX1	ET0	EX0	
Bit Number	Bit Mnemonic	Description						
7	EA		nterrupt bit isable all inter e all interrupts	•				
6	EC	PCA interru Cleared to d Set to enable		:				
5	ET2	Cleared to d	isable timer 2	pt Enable bit overflow inter flow interrupt.	rupt.			
4	ES		Enable bit isable serial p e serial port ir	•				
3	ET1	Cleared to d	isable timer 1	pt Enable bit overflow inter flow interrupt.	rupt.			
2	EX1	Cleared to d	errupt 1 Ena isable externa e external inte	al interrupt 1.				
1	ET0	Cleared to d	Fimer 0 overflow interrupt Enable bit Cleared to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.					
0	EX0	Cleared to d	errupt 0 Ena isable externa e external inte	al interrupt 0.				

Reset Value = 0000 0000b Bit addressable

Table 54. IPL0 Register

IPL0 - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0	
-	PPCL	PT2L	PSL	PT1L	PX1L	PTOL	PX0L	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.		
6	PPCL		pt Priority b i CH for priority					
5	PT2L		Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.					
4	PSL	Serial port I Refer to PSI	Priority bit I for priority le	evel.				
3	PT1L		rflow interru H for priority	pt Priority bit level.				
2	PX1L		External interrupt 1 Priority bit Refer to PX1H for priority level.					
1	PTOL		rflow interru)H for priority	pt Priority bit level.				
0	PX0L		errupt 0 Prio)H for priority					

Reset Value = X000 0000b Bit addressable

Table 55. IPH0 Register

IPH0 - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0	
-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	
Bit Number	Bit Mnemonic	Description	l					
7	-	Reserved The value re	ead from this b	oit is indetermi	nate. Do not s	et this bit.		
6	РРСН		Lowe	t <u>y Level</u> st				
5	PT2H		<u>'T2L</u> Priori Lowe		yh bit			
4	PSH		Lowe	t <u>y Level</u> st				
3	PT1H		<u>T1L Prior</u> Lowe		gh bit			
2	PX1H		Lowe	t <u>y Level</u> st				
1	PT0H	PTOH P 0 0 0 1 1 0	0 0 Lowest 0 1 1 0					
0	РХОН		Lowe	t <u>y Level</u> st				

Reset Value = X000 0000b Not bit addressable

Table 56. IEN1 Register

IEN1 - Interrupt Enable Register (B1h)

7	6	5	4	3	2	1	0	
-	-	-	-	-	ESPI	-	KBD	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved						
6	-	Reserved						
5	-	Reserved						
4	-	Reserved						
3	-	Reserved						
2	ESPI	Cleared to d	SPI interrupt Enable bit Cleared to disable SPI interrupt. Set to enable SPI interrupt.					
1		Reserved						
0	KBD	Cleared to d	iterrupt Enak isable keyboa e keyboard in	ard interrupt.				

Reset Value = XXXX X000b Bit addressable

Table 57. IPL1 Register

IPL1 - Interrupt Priority Register (B2h)

7	6	5	4	3	2	1	0		
-	-	-	-	-	SPIL	TWIL	KBDL		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value re	Reserved he value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.			
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.			
2	SPIL		SPI interrupt Priority bit Refer to SPIH for priority level.						
1	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.			
0	KBDL	-	iterrupt Prio DH for priority	-					

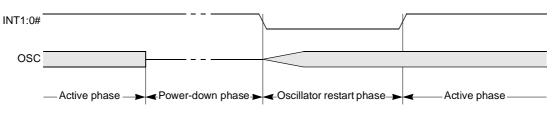
Reset Value = XXXX X000b Bit addressable

Table 58. IPH1 Register

IPH1 - Interrupt Priority High Register (B3h)

7	6	5	4	3	2	1	0	
-	-	-	-	-	SPIH	-	KBDH	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.		
6	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.		
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
2	SPIH		0 Lowest 0 1 1 0					
1	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
0	KBDH		nterrupt Prior BDL <u>Priorit</u> Lowe Highe	t <u>y Level</u> est				

Reset Value = XXXX X000b Not bit addressable


Power Management

Introduction	Two power reduction modes are implemented in the AT89C51RD2/ED2. The Idle mode and the Power-Down mode. These modes are detailed in the following sections. In addi- tion to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 mode detailed in Section "Enhanced Features", page 18.
Idle Mode	Idle mode is a power reduction mode that reduces the power consumption. In this mode, program execution halts. Idle mode freezes the clock to the CPU at known states while the peripherals continue to be clocked. The CPU status before entering Idle mode is preserved, i.e., the program counter and program status word register retain their data for the duration of Idle mode. The contents of the SFRs and RAM are also retained. The status of the Port pins during Idle mode is detailed in Table 59.
Entering Idle Mode	 To enter Idle mode, set the IDL bit in PCON register (see Table 60). The AT89C51RD2/ED2 enters Idle mode upon execution of the instruction that sets IDL bit. The instruction that sets IDL bit is the last instruction executed. Note: If IDL bit and PD bit are set simultaneously, the AT89C51RD2/ED2 enters Power-Down mode. Then it does not go in Idle mode when exiting Power-Down mode.
Exiting Idle Mode	 There are two ways to exit Idle mode: Generate an enabled interrupt. Hardware clears IDL bit in PCON register which restores the clock to the CPU. Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Idle mode. The general purpose flags (GF1 and GF0 in PCON register) may be used to indicate whether an interrupt occurred during normal operation or during Idle mode. When Idle mode is exited by an interrupt, the interrupt service routine may examine GF1 and GF0. Generate a reset. A logic high on the RST pin clears IDL bit in PCON register directly and asynchronously. This restores the clock to the CPU. Program execution momentarily resumes with the instruction immediately following the instruction that activated the Idle mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the AT89C51RD2/ED2 and vectors the CPU to address C:0000h. Note: During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated Idle mode should not write to a Port pin or to the external RAM.
Power-Down Mode	The Power-Down mode places the AT89C51RD2/ED2 in a very low power state. Power-Down mode stops the oscillator, freezes all clock at known states. The CPU sta- tus prior to entering Power-Down mode is preserved, i.e., the program counter, program status word register retain their data for the duration of Power-Down mode. In addition,

		R and RAM contents are preserved. The status of the Port pins during Power- mode is detailed in Table 59.
	Note:	VCC may be reduced to as low as V_{RET} during Power-Down mode to further reduce power dissipation. Take care, however, that VDD is not reduced until Power-Down mode is invoked.
Entering Power-Down Mode	enters	ter Power-Down mode, set PD bit in PCON register. The AT89C51RD2/ED2 the Power-Down mode upon execution of the instruction that sets PD bit. The tion that sets PD bit is the last instruction executed.
Exiting Power-Down Mode		
C C	Note:	If VCC was reduced during the Power-Down mode, do not exit Power-Down mode until VCC is restored to the normal operating level.
	There	are two ways to exit the Power-Down mode:
	1. Ge	enerate an enabled external interrupt.
	-	The AT89C51RD2/ED2 provides capability to exit from Power-Down using INT0#, INT1#.
		Hardware clears PD bit in PCON register which starts the oscillator and restores the clocks to the CPU and peripherals. Using INTx# input, execution resumes when the input is released (see Figure 37). Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Power-Down mode.
	Note:	The external interrupt used to exit Power-Down mode must be configured as level sensi- tive (INT0# and INT1#) and must be assigned the highest priority. In addition, the
		duration of the interrupt must be long enough to allow the oscillator to stabilize. The exe- cution will only resume when the interrupt is deasserted.

Figure 37. Power-Down Exit Waveform Using INT1:0#

2. Generate a reset.

content.

- A logic high on the RST pin clears PD bit in PCON register directly and _ asynchronously. This starts the oscillator and restores the clock to the CPU and peripherals. Program execution momentarily resumes with the instruction immediately following the instruction that activated Power-Down mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the AT89C51RD2/ED2 and vectors the CPU to address 0000h.
- Note: During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port

pins, the instruction immediately following the instruction that activated the Power-Down mode should not write to a Port pin or to the external RAM.

Note: Exit from power-down by reset redefines all the SFRs, but does not affect the internal RAM content.

Mode	Port 0	Port 1	Port 2	Port 3	Port 4	ALE	PSEN#
Reset	Floating	High	High	High	High	High	High
Idle (internal code)	Data	Data	Data	Data	Data	High	High
Idle (external code)	Floating	Data	Data	Data	Data	High	High
Power- Down (internal code)	Data	Data	Data	Data	Data	Low	Low
Power- Down (external code)	Floating	Data	Data	Data	Data	Low	Low

Table 59. Pin Conditions in Special Operating Modes

Registers

Table 60. PCON RegisterPCON (S87:h) Power configuration Register

7	6	5	4	3	2	1	0	
-	-	-	-	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Description	Description					
7-4	-	Reserved The value re	ad from these	bits is indeter	rminate. Do no	ot set these bit	ts.	
3	GF1	General Purpose flag 1 One use is to indicate whether an interrupt occurred during normal operation of during Idle mode.					operation or	
2	GF0	General Pur One use is to during Idle m	indicate whe	ether an interru	upt occurred d	uring normal o	operation or	
1	PD	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.						
0	IDL	Set to activat	ardware when the Idle mo	n an interrupt de. , PD takes pre		S.		

Reset Value= XXXX 0000b

Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the Watchdog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

Using the WDT To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{CLK PERIPH}, where T_{CLK PERIPH}= 1/F_{CLK} PERIPH. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16 ms to 2s @ F_{OSCA} = 12 MHz. To manage this feature, refer to WDTPRG register description, Table 61. The WDTPRG register should be configured before the WDT activation sequence, and can not be modified until next reset.

 Table 61.
 WDTRST Register

WDTRST - Watchdog Reset Register (0A6h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = XXXX XXXXb

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

Table 62. WDTPRG Register

WDTPRG - Watchdog Timer Out Register (0A7h)

7	6	5	4	3	2	1	0
-	-	-	-	-	S2	S1	S0
Bit Number	Bit Mnemonic	Descriptic	n				
7	-						
6	-						
5	-	Reserved The value	read from this bi	it is undetermi	ned. Do not try	/ to set this bit	t.
4	-						
3	-						
2	S2	WDT Time	-out select bit	2			
1	S1	WDT Time	-out select bit	1			
0	S0	WDT Time	-out select bit	0			
		0 0 0 0 0 1 0 1 1 0 1 0 1 1	$\begin{array}{cccc} 0 & (2^{14} - 1) \\ 1 & (2^{15} - 1) \\ 0 & (2^{16} - 1) \\ 1 & (2^{17} - 1) \\ 0 & (2^{18} - 1) \\ 1 & (2^{19} - 1) \\ 0 & (2^{20} - 1) \end{array}$	d Time-out machine cycle machine cycle machine cycle machine cycle machine cycle machine cycle machine cycle machine cycle	es, 32.7 ms @ es, 65. 5 ms @ es, 131 ms @ es, 262 ms @ es, 542 ms @ es, 1.05 ms @	$F_{OSCA}=12 MI$ $F_{OSCA}=12 MI$ $F_{OSCA}=12 MI$ $F_{OSCA}=12 MI$ $F_{OSCA}=12 MI$ $F_{OSCA}=12 MI$	Hz IHz Iz Iz Iz Iz

Reset Value = XXXX X000

WDT during Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode the user does not need to service the WDT. There are 2 methods of exiting Power-down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the AT89C51RD2/ED2 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is better to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the AT89C51RD2/ED2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

ONCE[®] Mode (ON-Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using AT89C51RD2/ED2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the AT89C51RD2/ED2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the AT89C51RD2/ED2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit. Table 63 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

ĺ	ALE	PSEN	Port 0	Port 1	Port 2	Port 3	Port I2	XTALA1/2	XTALB1/2
	Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Float	Active	Active

Table 63. External Pin Status During ONCE Mode

Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (Table 64). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

Table 64. PCON Register

7	6	5	4	3	2	1	0	
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Description						
7	SMOD1	•	Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.					
6	SMOD0	Cleared to se	Serial port Mode bit 0 Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.					
5	-	Reserved The value rea	ad from this b	it is indetermir	ate. Do not se	et this bit.		
4	POF	Power-Off Flag Cleared by software to recognize the next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be so software.					ilso be set by	
3	GF1			al-purpose usa rpose usage.	ge.			
2	GF0			al-purpose usa rpose usage.	ge.			
1	PD			n reset occurs. node.				
0	IDL	Idle mode b Cleared by h Set to enter in	ardware wher	n interrupt or re	eset occurs.			

PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

Table 65. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0
DPU	-	МО	XRS2	XRS1	XRS0	EXTRAM	AO
Bit Number	Bit Mnemonic	Description					
7	DPU	Disable Weak Pull-up Cleared by software to activate the permanent weak pull-up (default) Set by software to disable the weak pull-up (reduce power consumption)					
6	-	Reserved The value re	ad from this b	it is indetermir	ate. Do not s	et this bit.	
5	MO	Pulse length Cleared to stretch MOVX control: the \overline{RD} and the \overline{WR} pulse length is 6 clock periods (default). Set to stretch MOVX control: the \overline{RD} and the \overline{WR} pulse length is 30 clock period					
4	XRS2	XRAM Size					
3	XRS1	<u>XRS2 X</u> 0 0	<u>RS1 XRS</u> 0	0 <u>XRAM s</u> 256 byte			
2	XRS0	0 0 0 1 0 1 1 0	1 0 1 0	1024 by	es(default) tes		
1	EXTRAM	1 0 0 1792 bytes EXTRAM bit Cleared to access internal XRAM using MOVX @ Ri/ @ DPTR. Set to access external memory. Programmed by hardware after Power-up regarding Hardware Security (HSB), default setting, XRAM selected.					rity Byte
0	AO		E is emitted at used) (default)			scillator freque ring a MOVX o	

Reset Value = XX00 10'HSB. XRAM'0b Not bit addressable

EEPROM Data	This feature is available only for the AT89C51ED2 device.
Memory	The 2K bytes on-chip EEPROM memory block is located at addresses 0000h to 07FFh of the XRAM/ERAM memory space and is selected by setting control bits in the EECON register.
	A read or write access to the EEPROM memory is done with a MOVX instruction.
Write Data	Data is written by byte to the EEPROM memory block as for an external RAM memory.
	The following procedure is used to write to the EEPROM memory:Check EEBUSY flag
	 If the user application interrupts routines use XRAM memory space: Save and disable interrupts.
	Load DPTR with the address to write
	Store A register with the data to be written
	Set bit EEE of EECON register

- Execute a MOVX @DPTR, A
- Clear bit EEE of EECON register
- Restore interrupts.
- EEBUSY flag in EECON is then set by hardware to indicate that programming is in progress and that the EEPROM segment is not available for reading or writing.
- The end of programming is indicated by a hardware clear of the EEBUSY flag.

Figure 38 represents the optimal write sequence to the on-chip EEPROM data memory.

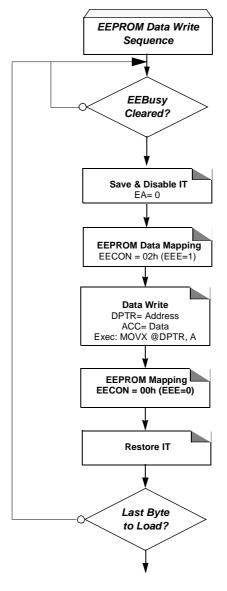
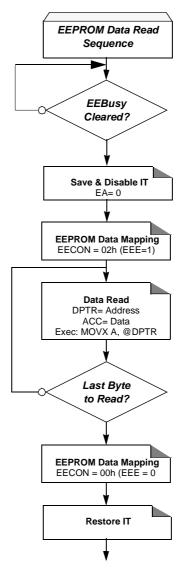


Figure 38. Recommended EEPROM Data Write Sequence

Read Data


The following procedure is used to read the data stored in the EEPROM memory:

Check EEBUSY flag

•

- If the user application interrupts routines use XRAM memory space: Save and disable interrupts.
- Load DPTR with the address to read
- Set bit EEE of EECON register
- Execute a MOVX A, @DPTR
- Clear bit EEE of EECON register
- Restore interrupts.

Figure 39. Recommended EEPROM Data Read Sequence

Registers

Table 66. EECON Register

EECON (0D2h) EEPROM Control Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	EEE	EEBUSY
Bit Number	Bit Mnemonic	Descriptio	n				
7 - 2	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.				
1	EEE	Set to map the EEPRC	DM.	e bit 1 space during space during		uctions (Write o	or Read to
0	EEBUSY	Set by hard Cleared by	hardware wh	g rogramming is en programmi d by software.			

Reset Value = XXXX XX00b Not bit addressable

Flash/EEPROM Memory	The Flash memory increases EEPROM and ROM functionality with in-circuit electrical erasure and programming. It contains 64K bytes of program memory organized respectively in 512 pages of 128 bytes. This memory is both parallel and serial In-System Programmable (ISP). ISP allows devices to alter their own program memory in the actual end product under software control. A default serial loader (bootloader) program allows ISP of the Flash. The programming does not require external dedicated programming voltage. The necessary high programming voltage is generated on-chip using the standard V _{CC} pins of the microcontroller.
Features	 Flash EEPROM Internal Program Memory Boot vector allows user provided Flash loader code to reside anywhere in the Flash memory space. This configuration provides flexibility to the user. Default loader in Boot ROM allows programming via the serial port without the need of a user provided loader. Up to 64K bytes external program memory if the internal program memory is disabled (EA = 0). Programming and erasing voltage with standard power supply Read/Programming/Erase: Byte-wise read without wait state Byte or page erase and programming (10 ms) Typical programming time (64K bytes) is 22s with on chip serial bootloader Parallel programming with 87C51 compatible hardware interface to programmer Programmable security for the code in the Flash 100K write cycles 10 years data retention
Flash Programming and Erasure	 The 64-K byte Flash is programmed by bytes or by pages of 128 bytes. It is not necessary to erase a byte or a page before programming. The programming of a byte or a page includes a self erase before programming. There are three methods of programming the Flash memory: The on-chip ISP bootloader may be invoked which will use low level routines to program the pages. The interface used for serial downloading of Flash is the UART. The Flash may be programmed or erased in the end-user application by calling low-level routines through a common entry point in the Boot ROM. The Flash may be programmed using the parallel method by using a conventional EPROM programmer. The parallel programming method used by these devices is similar to that used by EPROM 87C51 but it is not identical and the commercially available programmers need to have support for the AT89C51RD2/ED2. The bootloader and the Application Programming Interface (API) routines are located in the BOOT ROM.

Flash Registers and Memory Map

The AT89C51RD2/ED2 Flash memory uses several registers for its management:

- Hardware registers can only be accessed through the parallel programming modes which are handled by the parallel programmer.
- Software registers are in a special page of the Flash memory which can be accessed through the API or with the parallel programming modes. This page, called "Extra Flash Memory", is not in the internal Flash program memory addressing space.

Hardware Register The only hardware register of the AT89C51RD2/ED2 is called Hardware Security Byte (HSB).

7	6	5	4	3	2	1	0		
X2	BLJB	OSC	-	XRAM	LB2	LB1	LB0		
Bit Number	Bit Mnemonic	Description	Description						
7	X2	U U	Programmed ('0' value) to force X2 mode (6 clocks per instruction) after reset. Unprogrammed ('1' Value) to force X1 mode, Standard Mode, after reset						
6	BLJB	Boot Loader Jump Bit Unprogrammed ('1' value) to start the user's application on next reset at addres 0000h. Programmed ('0' value) to start the boot loader at address F800h on next reset (Default).							
5	OSC	U U	to allow oscill	ator B at start	•	Default).			
4	-	Reserved							
3	XRAM	XRAM config Programmed Unprogramme	to inhibit XRA	M.		er tools)			
2-0	LB2-0	User Memory See Table 68	Lock Bits (d	only program	mable by pro	grammer too	ols)		

Table 67. Hardware Security Byte (HSB)

Boot Loader Jump Bit (BLJB)

One bit of the HSB, the BLJB bit, is used to force the boot address:

- When this bit is programmed ('1' value) the boot address is 0000h.
- When this bit is unprogrammed ('1' value) the boot address is F800h. By default, this bit is unprogrammed and the ISP is enabled.

Flash Memory Lock Bits

The three lock bits provide different levels of protection for the on-chip code and data when programmed as shown in Table 68.

Table 68.	Program	Lock Bits
-----------	---------	-----------

Prod	ram Lo	ock Bits		
Security Level	LB0	LB1	LB2	Protection Description
1	U	U	U	No program lock features enabled.
2	Ρ	U	U	MOVC instruction executed from external program memory is disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further parallel programming of the on chip code memory is disabled. ISP and software programming with API are still allowed.
3	х	Р	U	Same as 2, also verify code memory through parallel programming interface is disabled.
4	Х	Х	Р	Same as 3, also external execution is disabled (Default).
These sec They are s	set by ed by	oits pro defaul the "so	t to le oftwar	he code access through the parallel programming interface vel 4. The code access through the ISP is still possible and e security bits" which are stored in the extra Flash memory re.
This will s	et the	HSB i	n its ir	th the parallel programmer, a chip erase must first be done nactive state and will erase the Flash memory. The part refusing Flash parallel programming modes.
 BLJB: X2: Ur XRAN 	Progr nprogr 1: Unp : Secu	amme amme rogran	d forc d to fo	B provides parts ready to be programmed with ISP: e ISP operation. proce X1 mode (Standard Mode). to valid XRAM ir to protect the code from a parallel access with maximum
	egiste		used	in factory and by parallel programmers. These values ar

used by Atmel ISP.

These registers are in the "Extra Flash Memory" part of the Flash memory. This block is also called "XAF" or eXtra Array Flash. They are accessed in the following ways:

- Commands issued by the parallel memory programmer.
- Commands issued by the ISP software.
- Calls of API issued by the application software.

Several software registers are described in Table 69.

Default Values

Software Registers

Mnemonic	Definition	Default value	Description
SBV	Software Boot Vector	FCh	
BSB	Boot Status Byte	0FFh	
SSB	Software Security Byte	FFh	
	Copy of the Manufacturer Code	58h	Atmel
	Copy of the Device ID #1: Family Code	D7h	C51 X2, Electrically Erasable
	Copy of the Device ID #2: Memories Size and Type	ECh	AT89C51RD2/ED2 64KB
	Copy of the Device ID #3: Name and Revision	EFh	AT89C51RD2/ED2 64KB, Revision 0

 Table 69.
 Default Values

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 70 and Table 71.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 70. Software Security Byte

7	6	5	4	3	2	1	0			
-	-	-	LB1 LB0							
Bit Number	Bit Mnemonic	Description								
7	-	Reserved Do not clear t	his bit.							
6	-	Reserved Do not clear t	his bit.							
5	-	Reserved Do not clear t	Reserved Do not clear this bit.							
4	-	Reserved Do not clear t	Reserved Do not clear this bit.							
3	-	Reserved Do not clear t	Reserved Do not clear this bit.							
2	-	Reserved Do not clear t	Reserved Do not clear this bit.							
1-0	LB1-0	User Memory See Table 7	Jser Memory Lock Bits See Table 71							

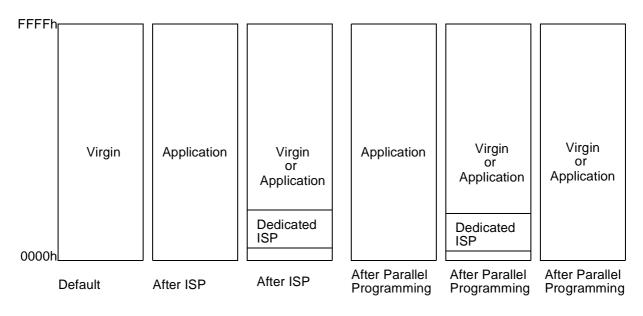
The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 71.

Table 71. Program Lock Bits of the SSB

Program Lock Bits		Bits	
Security Level	-		Protection Description
1	U	U	No program lock features enabled.
2	Р	U	ISP programming of the Flash is disabled.
3	Х	Р	Same as 2, also verify through ISP programming interface is disabled.

Note: U: Unprogrammed or "one" level.

P: Programmed or "zero" level.

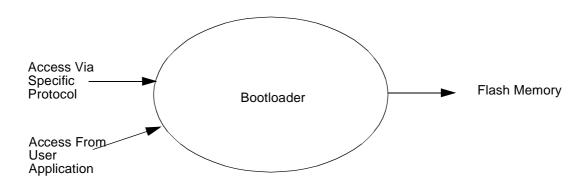

X: Do not care

WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

Flash Memory StatusAT89C51RD2/ED2 parts are delivered in standard with the ISP ROM bootloader.

After ISP or parallel programming, the possible contents of the Flash memory are summarized in Figure 40:

Figure 40. Flash Memory Possible Contents


Memory Organization When the EA pin is high, the processor fetches instructions from internal program Flash. If the EA pin is tied low, all program memory fetches are from external memory.

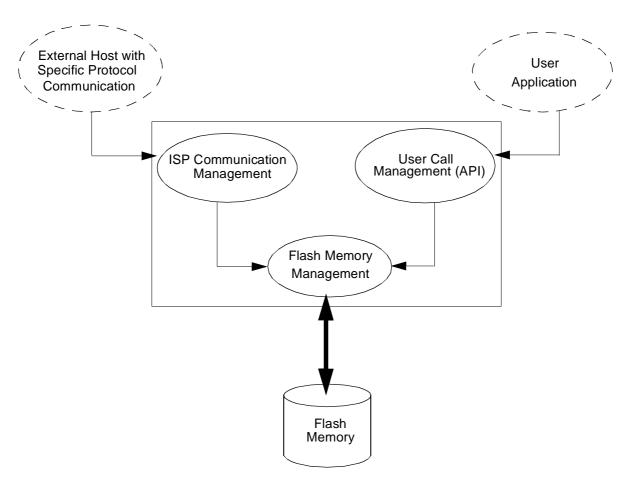
Bootloader Architecture

Introduction

The bootloader manages communication according to a specifically defined protocol to provide the whole access and service on Flash memory. Furthermore, all accesses and routines can be called from the user application.

Figure 41. Diagram Context Description

Acronyms


ISP: In-System Programming SBV: Software Boot Vector BSB: Boot Status Byte SSB: Software Security Bit HW: Hardware Byte

Functional Description

On the above diagram, the on-chip bootloader processes are:

ISP Communication Management

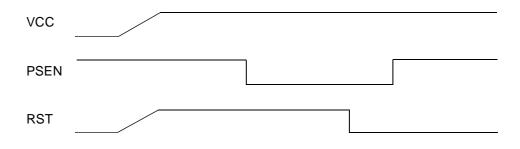
The purpose of this process is to manage the communication and its protocol between the on-chip bootloader and a external device. The on-chip ROM implements a serial protocol (see section "Bootloader Protocol"). This process translate serial communication frame (UART) into Flash memory access (read, write, erase, etc.).

User Call Management

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made through a common interface (API calls), included in the ROM bootloader. The programming functions are selected by setting up the microcontroller's registers before making a call to a common entry point (0xFFF0). Results are returned in the registers. The purpose on this process is to translate the registers values into internal Flash Memory Management.

Flash Memory Management

This process manages low level access to Flash memory (performs read and write access).


Bootloader Functionality The bootloader can be activated by two means: Hardware conditions or regular boot process.

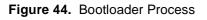
The Hardware conditions (EA = 1, PSEN = 0) during the Reset# falling edge force the on-chip bootloader execution. This allows an application to be built that will normally execute the end user's code but can be manually forced into default ISP operation.

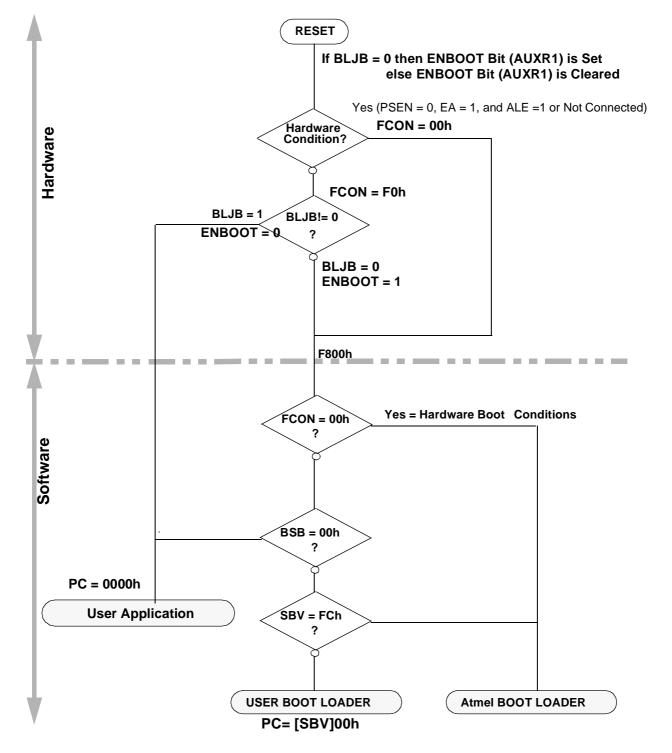
As PSEN is a an output port in normal operating mode after reset, user application should take care to release PSEN after falling edge of reset signal. The hardware conditions are sampled at reset signal falling edge, thus they can be released at any time when reset input is low.

To ensure correct microcontroller startup, the PSEN pin should not be tied to ground during power-on (See Figure 43).

Figure 43. Hardware conditions typical sequence during power-on.

The on-chip bootloader boot process is shown Figure 44.


Table 72. Bootloader Process Description


	Purpose
Hardware Conditions	The Hardware Conditions force the bootloader execution whatever BLJB, BSB and SBV values.
BLJB	The Boot Loader Jump Bit forces the application execution. BLJB = 0 => Bootloader execution BLJB = 1 => Application execution The BLJB is a fuse bit in the Hardware Byte. It can be modified by hardware (programmer) or by software (API). Note: The BLJB test is performed by hardware to prevent any program execution.
SBV	The Software Boot Vector contains the high address of customer bootloader stored in the application. SBV = FCh (default value) if no customer bootloader in user Flash. Note: The customer bootloader is called by JMP [SBV]00h instruction.

Boot Process

ISP Protocol Description

Physical Layer

The UART used to transmit information has the following configuration:

- Character: 8-bit data
- Parity: none
- Stop: 2 bits
- Flow control: none
- Baudrate: autobaud is performed by the bootloader to compute the baudrate chosen by the host.

Frame DescriptionThe Serial Protocol is based on the Intel Hex-type records.

Intel Hex records consist of ASCII characters used to represent hexadecimal values and are summarized below.

Figure 45. Intel Hex Type Frame

Record Mark ':'	Reclen	Load Offset	Record Type	or	
1-byte	1-byte	2-bytes	1-byte	n-bytes	1-byte

Record Mark:

Record Mark is the start of frame. This field must contain ':'.

Reclen:

Reclen specifies the number of bytes of information or data which follows the Record Type field of the record.

Load Offset:

Load Offset specifies the 16-bit starting load offset of the data bytes, therefore this field is used only for Data Program Record (see Section "ISP Commands Summary").

Record Type:

Record Type specifies the command type. This field is used to interpret the remaining information within the frame. The encoding for all the current record types is described in Section "ISP Commands Summary".

Data/Info:

Data/Info is a variable length field. It consists of zero or more bytes encoded as pairs of hexadecimal digits. The meaning of data depends on the **Record Type**.

Checksum:

The two's complement of the 8-bit bytes that result from converting each pair of ASCII hexadecimal digits to one byte of binary, and including the **Reclen** field to and including the last byte of the **Data/Info** field. Therefore, the sum of all the ASCII pairs in a record after converting to binary, from the **Reclen** field to and including the **Checksum** field, is zero.

Functional Description

Software Security Bits (SSB) The SSB protects any Flash access from ISP command. The command "Program Software Security Bit" can only write a higher priority level.

There are three levels of security:

• level 0: NO_SECURITY (FFh)

This is the default level. From level 0, one can write level 1 or level 2.

level 1: WRITE_SECURITY (FEh)

For this level it is impossible to write in the Flash memory, BSB and SBV. The Bootloader returns 'P' on write access. From level 1, one can write only level 2.

level 2: RD_WR_SECURITY (FCh

The level 2 forbids all read and write accesses to/from the Flash/EEPROM memory.

The Bootloader returns 'L' on read or write access.

Only a full chip erase in parallel mode (using a programmer) or ISP command can reset the software security bits.

From level 2, one cannot read and write anything.

	Level 0	Level 1	Level 2	
Flash/EEPROM	Any access allowed	Read-only access allowed	Any access not allowed	
Fuse Bit	Any access allowed	Read-only access allowed	Any access not allowed	
BSB & SBV	Any access allowed	Read-only access allowed	Any access not allowed	
SSB	Any access allowed	Write level 2 allowed	Read-only access allowed	
Manufacturer Info	Read-only access allowed	Read-only access allowed	Read-only access allowed	
Bootloader Info	Read-only access allowed	Read-only access allowed	Read-only access allowed	
Erase Block	Allowed	Not allowed	Not allowed	
Full Chip Erase	Allowed	Allowed	Allowed	
Blank Check	Allowed	Allowed	Allowed	

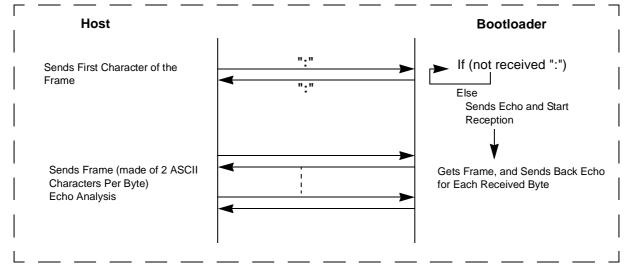
Table 73. Software Security Byte Behavior

Full Chip Erase	 The ISP command "Full Chip Erase" erases all user Flash memory (fills with FFh) and sets some bytes used by the bootloader at their default values: BSB = FFh SBV = FCh SSB = FFh The Full Chip Erase does not affect the bootloader. 				
Checksum Error	When a checksum error is detected	d, send 'X' followed with C	R&LF.		
Flow Description					
Overview	An initialization step must be perfected the bootloader waits for an autobat				
	When the communication is init requested by the host.	ialized, the protocol dep	pends on the record type		
	FLIP, a software utility to impleme Atmel web site.	nt ISP programming with	a PC, is available from the		
Communication Initialization	The host initializes the communicate to compute the baudrate (autobauc		acter to help the bootloader		
	Figure 46. Initialization		D (1)		
	Host		Bootloader		
	Init Communication	"U" >	Performs Autobaud		
	If (Not Received "U") Else Communication Opened	≺ "U"	Sends Back "U" Characte		

AIMEL

Autobaud Performances

The ISP feature allows a wide range of baud rates in the user application. It is also adaptable to a wide range of oscillator frequencies. This is accomplished by measuring the bit-time of a single bit in a received character. This information is then used to program the baud rate in terms of timer counts based on the oscillator frequency. The ISP feature requires that an initial character (an uppercase U) be sent to the AT89C51RD2/ED2 to establish the baud rate. Table show the autobaud capability.

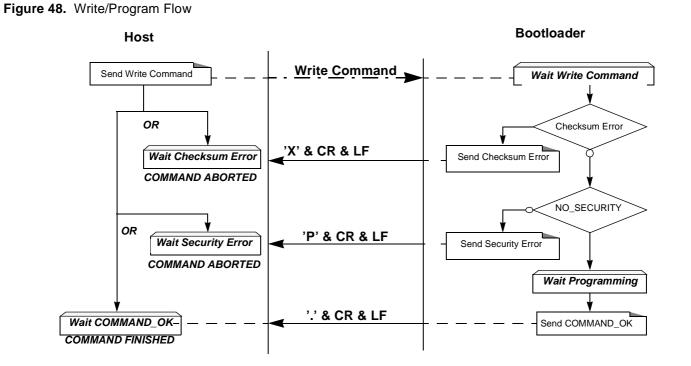

Table 74. Autobaud Performances

Frequency (MHz)									
Baudrate (kHz)	1.8432	2	2.4576	3	3.6864	4	5	6	7.3728
2400	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
4800	ОК	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК
9600	ОК	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК
19200	ОК	-	ОК	ОК	ОК	-	-	ОК	ОК
38400	-	-	ОК		ОК	-	ОК	ОК	ОК
57600	-	-	-	-	ОК	-	-	-	ОК
115200	-	-	-	-	-	-	-	-	ОК
	1		1	1		1			
Frequency (MHz)									
Baudrate (kHz)	8	10	11.0592	12	14.746	16	20	24	26.6
2400	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
4800	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
9600	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
19200	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
38400	-	-	ОК	ок	ОК	ОК	ОК	ОК	ОК
57600	-	-	ОК	-	ОК	ОК	ОК	ОК	ОК
115200	-	-	ОК	-	ОК	-	-	-	-

Command Data Stream Protocol

All commands are sent using the same flow. Each frame sent by the host is echoed by the bootloader.

Figure 47. Command Flow



Write/Program Commands Description

This flow is common to the following frames:

- Flash/EEPROM Programming Data Frame
- EOF or Atmel Frame (only Programming Atmel Frame)
- Config Byte Programming Data Frame
- Baud Rate Frame

Example

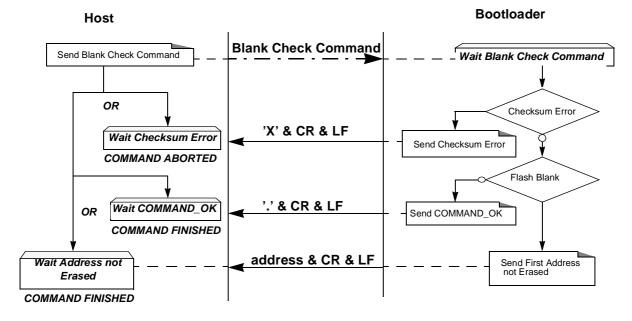
Programming Data (write 55h at address 0010h in the Flash)_

 HOST
 :
 01
 0010
 00
 55
 9A

 BOOTLOADER
 :
 01
 0010
 00
 55
 9A
 . CR
 LF

 Programming Atmel function (write SSB to level 2)

 HOST
 :
 02
 0000
 03
 05
 01
 F5

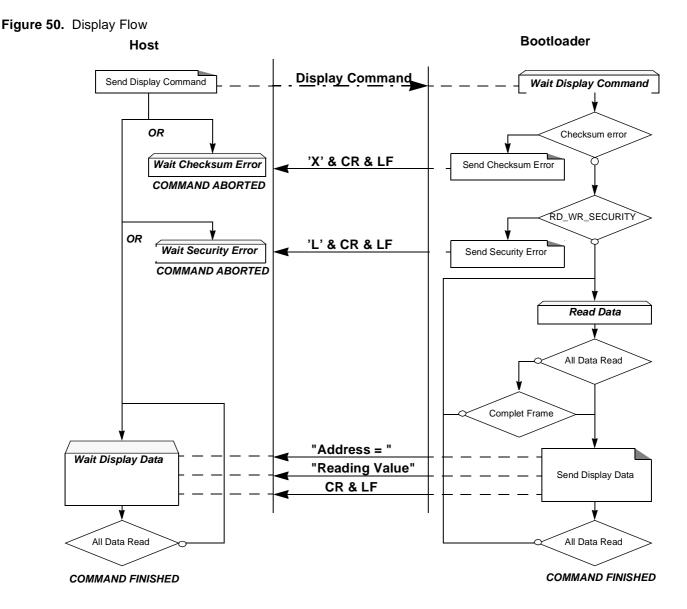

 BOOTLOADER
 :
 02
 0000
 03
 05
 01
 F5.
 CR
 LF

 Writing Frame (write BSB to 55h)
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :

HOST : 03 0000 03 06 00 55 9F BOOTLOADER : 03 0000 03 06 00 55 9F

Blank Check Command Description

Figure 49. Blank Check Flow


Example

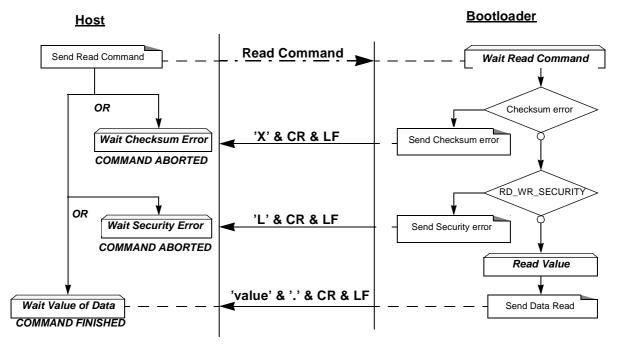
Blank Check ok													
HOST	:	05	0000	04	0000	7fff	01	78					
BOOTLOADER	:	05	0000	04	0000	7fff	01	78	•	CR	LF		
Blank Check ok at	t a	ddre	ess xxx	X									
HOST	:	05	0000	04	0000	7fff	01	78					
BOOTLOADER	:	05	0000	04	0000	7FFF	01	78	xx	xx	CR	LF	
Blank Check with	c	1eck	sum ei	rror									
HOST	:	05	0000	04	0000	7fff	01	70					
BOOTLOADER	:	05	0000	04	0000	7fff	01	70	Х	CR	LF	CR	LF

Display Data Description

Note: The maximum size of block is 400h. To read more than 400h bytes, the Host must send a new command.

Example

Display data from address 0000h to 0020h


HOST	: 05 0000 04 0000 0020 0	0 D7
BOOTLOADER	: 05 0000 04 0000 0020 0	0 D7
BOOTLOADER	0000=data CR LF	(16 data)
BOOTLOADER	0010=data CR LF	(16 data)
BOOTLOADER	0020=data CR LF	(1 data)

Read Function Description

This flow is similar for the following frames:

- Reading Frame
- EOF Frame/ Atmel Frame (only reading Atmel Frame)

Figure 51. Read Flow

Example

Read function (read SBV)

HOST	: 02 0000 05 07 02 F0			
BOOTLOADER	: 02 0000 05 07 02 F0 Value . CR LF			
Atmel Read function (read Bootloader version)				
HOST	: 02 0000 01 02 00 FB			
BOOTLOADER	: 02 0000 01 02 00 FB Value . CR LF			

ISP Commands Summary

Table 75. ISP Commands Summary

Command	Command Name	Data[0]	Data[1]	Command Effect
00h	Program Code			Program Nb Code Byte. Bootloader will accept up to 128 (80h) data bytes. The data bytes should be 128 byte page flash boundary.
			00h	Erase block0 (0000h-1FFFh)
			20h	Erase block1 (2000h-3FFFh)
		01h	40h	Erase block2 (4000h-7FFFh)
			80h	Erase block3 (8000h- BFFFh)
			C0h	Erase block4 (C000h- FFFFh)
		03h	00h	Hardware Reset
		04h	00h	Erase SBV & BSB
03h	Write Function	05h	00h	Program SSB level 1
		05h	01h	Program SSB level 2
		06h	00h	Program BSB (value to write in data[2])
		001	01h	Program SBV (value to write in data[2])
		07h	-	Full Chip Erase (This command needs about 6 sec to be executed)
		0Ah	04h	Program BLJB fuse (value to write in data[2])
				Program X2 fuse (value to write in data[2])
		Data[0:1] = start add	08h	Display Code
		Data [2:3] = end add		Blank Check
04h	Display Function	Data[4] = 00h:Displa Data[4] = 01h: Blan Data[4] = 02h: Displ	check	Display EEPROM data
			00h	Manufacturer Id
			01h	Device Id #1
		00h	02h	Device Id #2
			03h	Device Id #3
			00h	Read SSB
			01h	Read BSB
05h	Read Function	07h	02h	Read SBV
			06h	Read Extra Byte
		0Bh	00h	Read Hardware Byte
			00h	Read Device Boot ID1
		0Eh	01h	Read Device Boot ID2
		0Fh	00h	Read Bootloader Version
07h	Program EEPROM data			Program Nn EEprom Data Byte. Bootloader will accept up to 128 (80h) data bytes.

API Call Description	The IAP allows to reprogram a microcontroller on-chip Flash memory without removing it from the system and while the embedded application is running.
	The user application can call some Application Programming Interface (API) routines allowing IAP. These API are executed by the bootloader.
	To call the corresponding API, the user must use a set of Flash_api routines which can be linked with the application.
	Example of Flash_api routines are available on the Atmel web site on the software appli- cation note:
	C Flash Drivers for the AT89C51RD2/ED2
	The API calls description and arguments are shown in Table 76.
Process	The application selects an API by setting R1, ACC, DPTR0 and DPTR1 registers.
	All calls are made through a common interface "USER_CALL" at the address FFF0h.
	The jump at the USER_CALL must be done by LCALL instruction to be able to come- back in the application.
	Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.
Constraints	The interrupts are not disabled by the bootloader.
	Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled when returning.
	Interrupts must also be disabled before accessing EEPROM Data then re-enabled after.

The user must take care of hardware watchdog before launching a Flash operation.

Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect
READ MANUF ID	00h	XXh	0000h	XXh	ACC = Manufacturer Id	Read Manufacturer identifier
READ DEVICE ID1	00h	XXh	0001h	XXh	ACC = Device Id 1	Read Device identifier 1
READ DEVICE ID2	00h	XXh	0002h	XXh	ACC = Device Id 2	Read Device identifier 2
READ DEVICE ID3	00h	XXh	0003h	XXh	ACC = Device Id 3	Read Device identifier 3
	DPH = 00h	DPH = 00h		Erase block 0		
			DPH = 20h			Erase block 1
			DPH = 40h			Erase block 2
ERASE BLOCK	DCK 01h XXh Address of 00h ACC = DPH byte to program	byte to	byte to	byte to	byte to	Program one Data Byte in user Flash
			XXh			Erase Software boot vector and boot status byte. (SBV = FCh and BSB = FFh)

Table 76. API Call Summary

Table 76. API Call Summary (Continued)

Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect
			DPH = 00h DPL = 00h			Set SSB level 1
	05h	XXh	DPH = 00h DPL = 01h	00h	ACC = SSB value	Set SSB level 2
PROGRAM SSB	0.011		DPH = 00h DPL = 10h	0011		Set SSB level 0
			DPH = 00h DPL = 11h			Set SSB level 1
PROGRAM BSB	06h	New BSB value	0000h	XXh	none	Program boot status byte
PROGRAM SBV	06h	New SBV value	0001h	XXh	none	Program software boot vector
READ SSB	07h	XXh	0000h	XXh	ACC = SSB	Read Software Security Byte
READ BSB	07h	XXh	0001h	XXh	ACC = BSB	Read Boot Status Byte
READ SBV	07h	XXh	0002h	XXh	ACC = SBV	Read Software Boot Vector
PROGRAM DATA PAGE	09h	Number of byte to program	Address of the first byte to program in the Flash memory	Address in XRAM of the first data to program	ACC = 0: DONE	Program up to 128 bytes in user Flash. Remark: number of bytes to program is limited such as the Flash write remains in a single 128 bytes page. Hence, when ACC is 128, valid values of DPL are 00h, or, 80h.
PROGRAM X2 FUSE	0Ah	Fuse value 00h or 01h	0008h	XXh	none	Program X2 fuse bit with ACC
PROGRAM BLJB FUSE	0Ah	Fuse value 00h or 01h	0004h	XXh	none	Program BLJB fuse bit with ACC
READ HSB	0Bh	XXh	XXXXh	XXh	ACC = HSB	Read Hardware Byte
READ BOOT ID1	0Eh	XXh	DPL = 00h	XXh	ACC = ID1	Read boot ID1
READ BOOT ID2	0Eh	XXh	DPL = 01h	XXh	ACC = ID2	Read boot ID2
READ BOOT VERSION	0Fh	XXh	XXXXh	XXh	ACC = Boot_Version	Read bootloader version

Electrical Characteristics

Absolute Maximum Ratings

I = industrial Storage Temperature Voltage on V_{CC} to V_{SS} VVoltage on Any Pin to V_{SS}	-65°C to + 150°C
Power Dissipation	

Note: Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Power dissipation is based on the maximum allowable die temperature and the thermal resistance of the package.

DC Parameters for Standard Voltage

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{SS} = 0V$;

 V_{CC} =2.7V to 5.5V and F = 0 to 40 MHz (both internal and external code execution)

 V_{CC} =4.5V to 5.5V and F = 0 to 60 MHz (internal code execution only)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except RST, XTAL1	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage RST, XTAL1	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4 ⁽⁶⁾			0.3 0.45 1.0	V V V	$\begin{split} V_{CC} &= 4.5 V \text{ to } 5.5 V \\ I_{OL} &= 100 \ \mu A^{(4)} \\ I_{OL} &= 1.6 \ m A^{(4)} \\ I_{OL} &= 3.5 \ m A^{(4)} \end{split}$
				0.45	V	$V_{CC} = 2.7V \text{ to } 5.5V$ $I_{OL} = 0.8 \text{ mA}^{(4)}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN ⁽⁶⁾			0.3 0.45 1.0	V V V	$\begin{split} V_{CC} &= 4.5 V \text{ to } 5.5 V \\ I_{OL} &= 200 \ \mu A^{(4)} \\ I_{OL} &= 3.2 \ m A^{(4)} \\ I_{OL} &= 7.0 \ m A^{(4)} \end{split}$
				0.45	V	$V_{CC} = 2.7V \text{ to } 5.5V$ $I_{OL} = 1.6 \text{ mA}^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3, 4	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$V_{CC} = 5V \pm 10\%$ $I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$
		0.9 V _{CC}			V	V_{CC} = 2.7V to 5.5V I_{OH} = -10 μ A

$T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{SS} = 0V$;

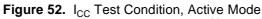
 V_{CC} =2.7V to 5.5V and F = 0 to 40 MHz (both internal and external code execution)

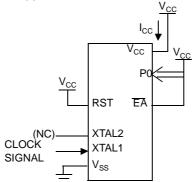
 V_{CC} =4.5V to 5.5V and F = 0 to 60 MHz (internal code execution only) (Continued)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$V_{CC} = 5V \pm 10\%$ $I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$
		0.9 V _{CC}			V	V_{CC} = 2.7V to 5.5V I_{OH} = -10 μ A
R _{RST}	RST Pull-down Resistor	50	200 ⁽⁵⁾	250	kΩ	
I	Logical 0 Input Current ports 1, 2, 3, 4 and 5			-50	μΑ	V _{IN} = 0.45V
I _{LI}	Input Leakage Current			±10	μΑ	$0.45 \mathrm{V} < \mathrm{V_{IN}} < \mathrm{V_{CC}}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4			-650	μΑ	V _{IN} = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	$F_{C} = 3 \text{ MHz}$ $T_{A} = 25^{\circ}\text{C}$
I _{PD}	Power-down Current		75	150	μΑ	$2.7 < V_{CC <} 5.5 V^{(3)}$
I _{CCOP}	Power Supply Current on normal mode			0.4 x Frequency (MHz) + 5	mA	$V_{\rm CC} = 5.5 V^{(1)}$
	Power Supply Current on idle mode			0.3 x Frequency (MHz) + 5	mA	$V_{\rm CC} = 5.5 V^{(2)}$
ICCWRITE	Power Supply Current on flash or EEdata write			0.8 x Frequency (MHz) + 15	mA	$V_{CC} = 5.5V$
t _{WRITE}	Flash or EEdata programming time	7		17	ms	2.7 < V _{CC <} 5.5V

Notes: 1. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 55), $V_{IL} = V_{SS} + 0.5V$, $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; EA = RST = Port 0 = V_{CC} . I_{CC} would be slightly higher if a crystal oscillator used (see Figure 52).

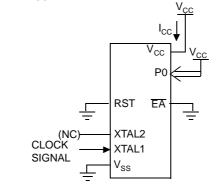
Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} - 0.5V; XTAL2 N.C; Port 0 = V_{CC}; EA = RST = V_{SS} (see Figure 53).

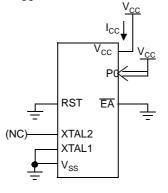

Power-down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 54).

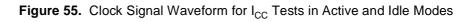

4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OLS} of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100 pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

5. Typical values are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA


If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.


All other pins are disconnected.



All other pins are disconnected.

All other pins are disconnected.

AC Parameters

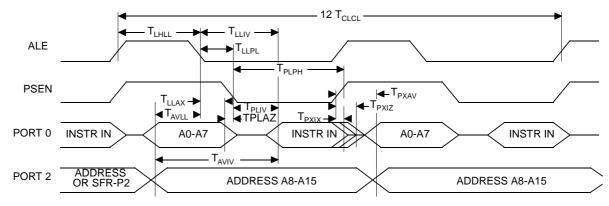
Explanation of the AC Symbols	Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Example: T_{AVLL} = Time for Address Valid to ALE Low. T_{LLPL} = Time for ALE Low to PSEN Low. (Load Capacitance for port 0, ALE and PSEN = 100 pF; Load Capacitance for all other outputs = 80 pF.)
	Table 77 Table 80, and Table 83 give the description of each AC symbols.
	Table 78, Table 79, Table 81 and Table 84 gives the range for each AC parameter.
	Table 78, Table 79 and Table 85 give the frequency derating formula of the AC parame- ter for each speed range description. To calculate each AC symbols. take the x value in the correponding column (-M or -L) and use this value in the formula.
	Example: T _{LLIU} for -M and 20 MHz, Standard clock. x = 35 ns T 50 ns T _{CCIV} = 4T - x = 165 ns
External Program Memory	Table 77. Symbol Description

Characteristics

Symbol	Parameter
т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction Float After PSEN
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Symbol	-М			-L	Units
	Min	Мах	Min	Max	
Т	25		25		ns
T _{LHLL}	35		35		ns
T _{AVLL}	5		5		ns
T _{LLAX}	5		5		ns
T _{LLIV}		n 65		65	ns
T _{LLPL}	5		5		ns
T _{PLPH}	50		50		ns
T _{PLIV}		30		30	ns
T _{PXIX}	0		0		ns
T _{PXIZ}		10		10	ns
T _{AVIV}		80		80	ns
T _{PLAZ}		10		10	ns

Table 79	AC Parameters for a Fix Clock
Table 78.	AC Parameters for a Fix Clock


Table 79. AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	X parameter for -L range	Units
T _{LHLL}	Min	2 T - x	T - x	15	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	20	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	20	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	35	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	15	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	25	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	45	45	ns
T _{PXIX}	Min	х	х	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	15	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	45	45	ns
T _{PLAZ}	Max	х	х	10	10	ns

External Program Memory Read Cycle

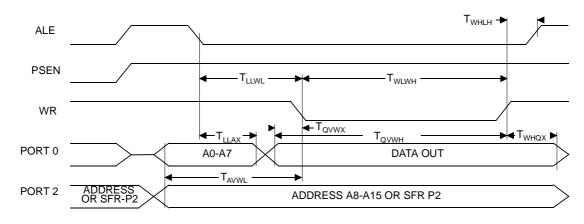
External Data Memory Characteristics

Table 80. Symbol Description

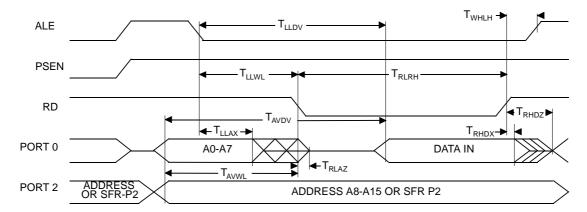
Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data Set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

	-М		-L		
Symbol	Min	Max	Min	Мах	Units
T _{RLRH}	125		125		ns
T _{WLWH}	125		125		ns
T _{RLDV}		95		95	ns
T _{RHDX}	0		0		ns
T _{RHDZ}		25		25	ns
T _{LLDV}		155		155	ns
T _{AVDV}		160		160	ns
T _{LLWL}	45	105	45	105	ns
T _{AVWL}	70		70		ns
T _{QVWX}	5		5		ns
T _{QVWH}	155		155		ns
T _{WHQX}	10		10		ns
T _{RLAZ}	0		0		ns
T _{WHLH}	5	45	5	45	ns

Table 81. A	AC Parameters	for a Fix	Clock
-------------	---------------	-----------	-------


Table 82. AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	X parameter for -L range	Units
T _{RLRH}	Min	6 T - x	3 T - x	25	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	25	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	30	30	ns
T _{RHDX}	Min	х	х	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	25	25	ns
T _{LLDV}	Max	8 T - x	4T -x	45	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	65	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	30	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	30	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	30	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	20	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	20	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	15	15	ns
T _{RLAZ}	Max	х	х	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	20	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	20	20	ns



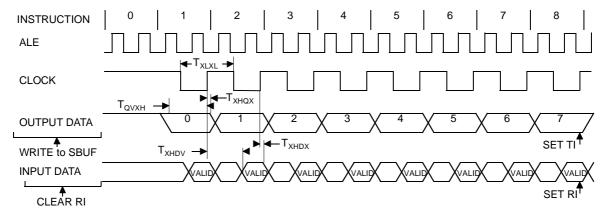
External Data Memory Write Cycle

External Data Memory Read Cycle

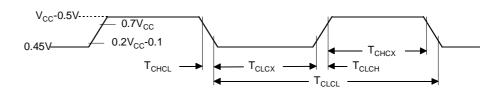
Serial Port Timing - Shift Register Mode

Table 83. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid


Table 84.	AC Parameters	for a	Fix	Clock
-----------	---------------	-------	-----	-------

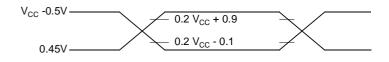
	-М				
Symbol	Min	Max	Min	Мах	Units
T _{XLXL}	300		300		ns
T _{QVHX}	200		200		ns
T _{XHQX}	30		30		ns
T _{XHDX}	0		0		ns
T _{XHDV}		117		117	ns

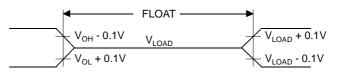

 Table 85.
 AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	X Parameter For -M Range	X Parameter For -L Range	Units
T _{XLXL}	Min	12 T	6 T			ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	ns
T _{XHDX}	Min	х	х	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	ns

Shift Register Timing Waveforms

External Clock Drive Waveforms




AC Testing Input/Output Waveforms

INPUT/OUTPUT

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. I_{OL}/I_{OH} $\geq \pm$ 20 mA.

Clock Waveforms

Valid in normal clock mode. In X2 mode XTAL2 must be changed to XTAL2/2.

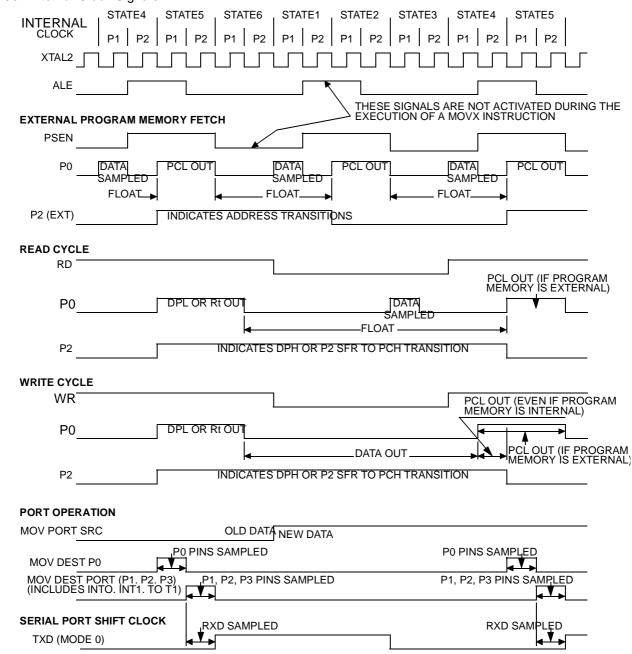


Figure 56. Internal Clock Signals

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) \overline{RD} and \overline{WR} propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

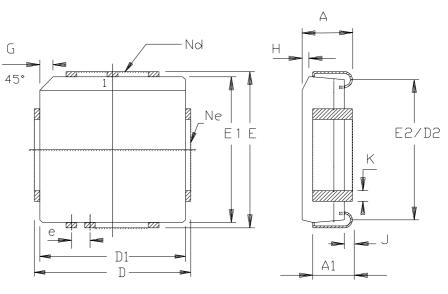
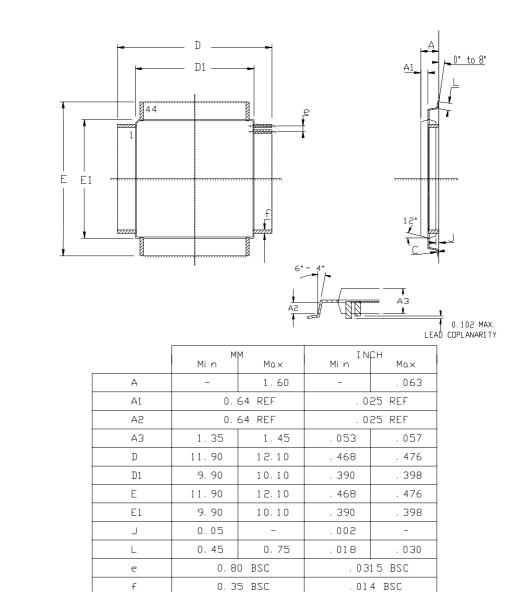

Ordering Information

Table 86. Possible Order Entries

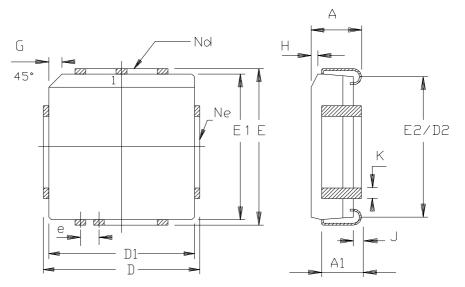
Part Number	Data EEPROM	Supply Voltage	Temperature Range	Package	Packing	Product Marking
AT89C51RD2-SLSIM	No			PLCC44	Stick	AT89C51RD2-IM
AT89C51RD2-RLTIM				VQFP44	Tray	AT89C51RD2-IM
AT89C51ED2-SLSIM		2.7V - 5.5V	Industrial	PLCC44	Stick	AT89C51ED2-IM
AT89C51ED2-RLTIM				VQFP44	Tray	AT89C51ED2-IM
AT89C51ED2-3CSIM				PDIL40	Stick	AT89C51ED2-IM

Packaging Information

PLCC44

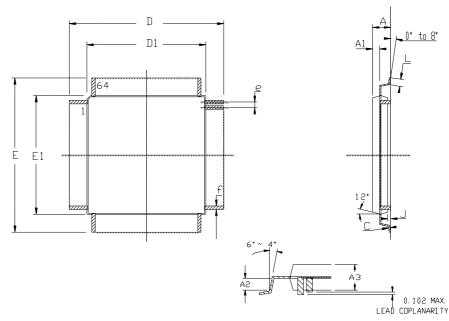


	1	MM ·	ΙN	СН
A	4. 20	4. 57	. 165	. 180
A1	2. 29	3.04	. 090	. 120
D	17.40	17.65	. 685	. 695
D1	16.44	16.66	. 647	. 656
D2	14.99	16.00	. 590	. 630
E	17.40	17.65	. 685	. 695
E1	16.44	16.66	. 647	. 656
E2	14.99	16.00	. 590	. 630
e	1.27	BSC	. 050	B2C
G	1.07	1.22	. 042	. 048
н	1.07	1.42	. 042	. 056
J	0.51	-	. 020	-
К	0.33	0.53	. 013	. 021
Nd	1	. 1	1	1
Ne	1	. 1	1	1
P	KG STD	00		

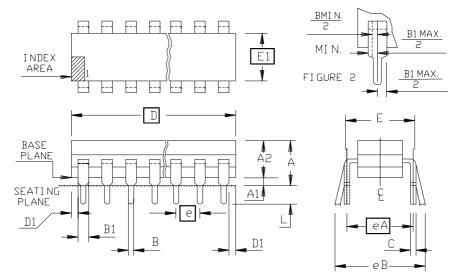


VQFP44

PLCC68



	(
	N	1M	ΙN	СН
A	4. 20	5.08	. 165	, 200
A1	2, 29	3. 30	. 090	. 130
D	25.02	25. 27	. 985	. 995
D1	24.13	24. 33	. 950	. 958
D2	22. 61	23. 62	. 890	. 930
E	25.02	25. 27	. 985	. 995
E1	24.13	24. 33	. 950	. 958
E5	22. 61	23. 62	. 890	. 930
е	1.27	BSC	. 050	BSC
G	1.07	1.22	.042	.048
Н	1.07	1.42	.042	. 056
J	0.51	-	. 020	-
К	0.33	0.53	. 013	. 021
Nd	1	7	1	7
Ne	1	7	1	7
P	KG STD	00		



VQFP64

	м	м	IN	СН
	Min	Max	Min	Max
А	-	1.60	_	. 063
A1	Ο.	64 REF	. 0	25 REF
A2	Ο.	64 REF	. 0	25 REF
A3	1.35	1.45	. 053	. 057
D	11.75	12.25	. 463	. 483
D1	9.90	10.10	. 390	. 398
E	11.75	12.25	. 463	. 483
E1	9.90	10.10	. 390	. 398
J	0.05	-	. 002	-
L	0.45	0,75	. 018	.030
e	0.5	0 BSC	. 01	97 BSC
f	0.2	5 BSC	. 01	0 BSC

PDIL40

		MM	ΙN	СН
A	-	5.08	-	. 200
A1	0.38	-	. 015	-
A2	3.18	4. 95	. 125	. 195
В	0.36	0.56	. 014	. 022
B1	0.76	1.78	. 030	. 070
С	0.20	0.38	. 008	. 015
D	50.29	53. 21	1.980	2.095
E	15.24	15.87	. 600	. 625
E1	12.32	14.73	. 485	. 580
e	2. 54	B. S. C	. 100	B. S. C
еА	15.24	B. S. C	. 600	B. S. C
еB	-	17.78	_	. 700
L	2, 93	3. 81	. 115	. 150
D1	0.13	-	. 005	_
P	KG STD	02		

Datasheet Change Log for AT89C51RD2/ED2

Changes from 4235A - 04/03 to 4135B - 06/03	 V_{IH} min changed from 0.2 V_{CC} Added POR/PFD and reset sp Added DIL40 package. Added Flash write programming
Changes from 4235B -	 Changed maximum frequency
06/03 to 4235C - 08/03	for Vcc = 4.5V to 5.5V and interest

- + 1.1 to 0.2 V_{CC} + 0.9. pecific sections.
- ng time specification.
- y to 60 MHz in X1 mode and 30 MHz in X2 mode ernal code execution.
- 2. Added PDIL40 Packaging for AT89C51ED2.
- Changes from 4235C -08/03 to 4235D - 12/03
- 1. Improved explanations throughout the document.

Table of Contents

Features	1
Description	1
Block Diagram	4
SFR Mapping	5
Pin Configurations	10
Port Types	15
Oscillator	16
Registers	16
Functional Block Diagram	17
Enhanced Features	18
X2 Feature	18
Dual Data Pointer Register (DPTR)	22
Expanded RAM (XRAM)	25
Registers	27
Reset	
Introduction	28
Reset Input	28
Reset Output	29
Power Monitor	30
Description	30
Timer 2	32
Auto-reload Mode	32
Programmable	
Clock-output	
Registers	35
Programmable Counter Array (PCA)	37
PCA Capture Mode	
16-bit Software Timer/ Compare Mode	
High Speed Output Mode	
Pulse Width Modulator Mode	
PCA Watchdog Timer	48

AT89C51RD2/ED2

i

4235D-8051-12/03

Serial I/O Port	50
Framing Error Detection	50
Automatic Address Recognition	51
Registers	53
Baud Rate Selection for UART for Mode 1 and 3	53
UART Registers	56
Keyboard Interface	61
Registers	62
Serial Port Interface (SPI)	65
Features	
Signal Description	
Functional Description	
Interrupt System	74
Registers	
Interrupt Sources and Vector Addresses	
Power Management	83
Introduction	83
Idle Mode	83
Power-Down Mode	83
Registers	86
Hardware Watchdog Timer	87
Using the WDT	87
WDT during Power-down and Idle	88
ONCE® Mode (ON- Chip Emulation)	89
Power-off Flag	90
Reduced EMI Mode	91
	91
EEPROM Data Memory	92
Write Data	92
Read Data	94
Registers	95
Flash/EEPROM Memory	96
Features	
Flash Programming and Erasure	
Flash Registers and Memory Map	
Flash Memory Status 1	
Memory Organization 1	100

Bootloader Architecture 101
ISP Protocol Description105
Functional Description 106
Flow Description 107
API Call Description 115
Electrical Characteristics
Absolute Maximum Ratings117
DC Parameters for Standard Voltage117
AC Parameters 120
Ordering Information 129
Ordering Information
Packaging Information129
Packaging Information 129 PLCC44 129
PLCC44 129
PLCC44
PLCC44
PLCC44 129 VQFP44 130 DIL40 131 PLCC68 132
PLCC44 129 VQFP44 130 DIL40 131 PLCC68 132 VQFP64 133 PDIL40 134
PLCC44 129 VQFP44 130 DIL40 131 PLCC68 132 VQFP64 133 PDIL40 134 Datasheet Change Log for AT89C51RD2/ED2
PLCC44 129 VQFP44 130 DIL40 131 PLCC68 132 VQFP64 133 PDIL40 134 Datasheet Change Log for AT89C51RD2/ED2 135 Changes from 4235A -04/03 to 4135B - 06/03 135
PLCC44 129 VQFP44 130 DIL40 131 PLCC68 132 VQFP64 133 PDIL40 134 Datasheet Change Log for AT89C51RD2/ED2

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

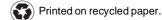
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel[®] and combinations thereof are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

